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a b s t r a c t

This paper deals with designing a repetitive controller (RC) for tracking periodic reference trajectories
for systems that exhibit hysteresis, such as piezoelectric actuators used in nanopositioning systems.
Hysteresis can drastically limit the performance of an RC designed around a linear dynamics model,
and thus the effect of hysteresis on the closed-loop stability of RC is analyzed and the allowable size
of the hysteresis nonlinearity for a stable RC is quantified. But when the hysteresis effect exceeds
the maximum bound, an inverse-hysteresis feedforward controller based on the Prandtl–Ishlinskii
hysteresis model is used to compensate for the nonlinearity. The control method is implemented on
a custom-designed nanopositioning stage. Experimental results show that by incorporating hysteresis
compensation the stability margin and the rate of error reduction improve. Likewise, the maximum
tracking error reduces by 71%, from 13.7% (using industry-standard integral control) to 3.9% (using RC
with hysteresis compensation), underscoring the benefits of RC with hysteresis compensation.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric, magnetostrictive, and other types of active (or
smart) material actuators employed for motion control and
manipulation (e.g., see Clayton, Tien, Leang, Zou, & Devasia, 2009,
Tan & Baras, 2004) exhibit hysteresis. The effect alone can lead to
over 20% tracking error, for example in piezo-based manipulators
(Leang & Devasia, 2007), if left unaccounted for. Furthermore,
hysteresis can affect the stability and tracking performance of a
closed-loop controller, especially when the controller is designed
around a linear model (Main & Garcia, 1997). This work deals
with designing a repetitive controller (RC) for tracking periodic
reference trajectories for systems that exhibit hysteresis, such as
piezoelectric actuators used in nanopositioning systems.

Piezoelectric actuators are commonly used to track a desired
motion trajectory that is periodic in time, for example the raster
pattern in scanning probe microscopy (Clayton et al., 2009). Such
periodic motion is ideally suited for repetitive control, a feedback-
based approach that is effective for precision tracking of periodic
reference trajectories and/or for rejecting periodic disturbances
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(Inoue, Nakano, & Iwai, 1981). The RC approach has been applied
to a number of applications (Aridogan, Shan, & Leang, 2009; Chew
& Tomizuka, 1990; Steinbuch, Weiland, & Singh, 2007). However,
the design of RC for hysteretic systems is challenging because
the hysteresis effect can drastically affect the performance of the
closed-loop system, especially when the RC is designed around a
linear dynamics model.

Although the design of RC for nonlinear systems has been
studied in the past, e.g., see (Hikita, Yamashita, & Kubota, 1993),
the work on quantifying the effect of hysteresis on the stability
of an RC system is limited. Typically, the nonlinearity is handled
through an internal feedback loop, such as PID (Choi, Lim, & Choi,
2002), to linearize the systemdynamics. Feedforward control using
an inverse hysteresis model is considered by Ahn (2003). Herein,
the input–output behavior of the system is modeled by a static
input nonlinearity with an output that drives the linear dynamics
(Leang, Zou, & Devasia, 2009). The hysteresis effect is modeled by
the Prandtl–Ishlinskii (P–I) approach (Brokate & Sprekels, 1996).
The P–I model is a rate-independent phenomenological model
and chosen over other models such as the polynomial model,
the BoucWen model, the Duhem model, the Maxwell slip model,
and the Preisach model (Adriaens, deKoning, & Banning, 2000;
Song & Armen, 2006) because of its smaller parameter space and
ability for online implementation. Using the P–Imodel, the effect of
hysteresis on the stability of the RC closed-loop system is analyzed
to determine the tolerable size of the hysteresis nonlinearity for a
stable RC system. If, on the other hand, the hysteresis behavior is
unacceptably large, a feedforward controller based on the structure
of the P–I model is used to compensate for the hysteresis behavior.
The control approach is applied to a custom-designed piezo-
based nanopositioning stage and experimental tracking results are
presented to validate the inverse model and RC design.
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Fig. 1. A plug-in repetitive controller for a linear system.

2. Repetitive control for hysteretic systems

2.1. A plug-in RC for linear systems

A typical plug-in style RC for a linear discrete-time dynamical
system G(z) is shown in Fig. 1, where R(z) is a periodic reference
trajectory with period Tp. The RC is created by including a pure
delay, z−N , inside of a positive-feedback loop to create a signal
generator with period Tp, where Ts is the sampling period and
N = Tp/Ts ∈ N is the number of points per period of the reference
trajectory. The low pass filter Q (z) is included to lower the high
gain of the RC at high frequencies to ensure stability and robustness
(Chew & Tomizuka, 1990). The RC gain, krc , and the two positive
phase-lead compensators, P1,2(z) = zm1,2 , where m1,m2 are
non-negative integers, are added to improve tracking performance
(Aridogan et al., 2009). Notably, P1(z) compensates for the
phase lag of the low-pass filter Q (z) while P2(z) compensates
for the phase lag of the closed-loop system. Both phase-lead
compensators contribute a phase angle of θi(ω) = miTsω, for
i = 1, 2. A typical feedback controller, such as a PID, is represented
by Gc(z). Then with z = ejω Ts for ωϵ(0, π/Ts), the complimentary
sensitivity function of the feedback system without the RC is

T (ejωTs) =
Gc(ejωTs)G(ejωTs)

[1 + Gc(ejωTs)G(ejωTs)]
= A(ω)ejθT (ω), (1)

where A(ω) > 0. Applying the Small-Gain Theorem, the RC system
is stable provided that (Aridogan et al., 2009)

0 < krc <
2 cos[θT (ω) + θ2(ω)]

A(ω)
, (2)

−π/2 < [θT (ω) + θ2(ω)] < π/2. (3)

2.2. The Prandtl–Ishlinskii hysteresis model

The cascade model structure for the plant shown in Fig. 2(a)
is assumed, and the Prandtl–Ishlinskii model is used to represent
the hysteresis behavior H[·]. The linear dynamics, such as the
structural vibration and creep effect in a piezoactuator (Clayton
et al., 2009), are modeled by G(z).

The Prandtl–Ishlinskii model is a phenomenological operator-
type model that has recently been used to model the hysteresis
in piezoactuators (Janaideh, Su, & Rakheja, 2008). In this model,
the output is a weighted sum of play or stop operators (Brokate
& Sprekels, 1996). Let the input function u(t) ∈ Cm[ta, tb], where
Cm[ta, tb] represents the space of piecewise continuous monotone
functions defined over the interval {t : ta ≤ t ≤ tb; a, b ∈ N}.
The play operator is defined as Pr [u](0) = pr(f (0), 0) = 0,
Pr [u](t) = pr(f (t), Pr [f ](t)), and pr(f (ti), Pr [f ](ti)) = max(f (ti)
− γ ,min(f (ti) + γ , Pr [f ](ti−1))), where f (t) = g0u(t) + g1 is a
linear function of the control input u(t), g0 and g1 are constants,
γ = ρj, with ρ being a constant, and j is the number of operators.
The output v(t) is defined as a weighted sum of play operators, i.e.,

v(t) = H[u](t) , f (t) +

 R

0
d(γ )Pr [u](t)dγ , (4)
a

b c

Fig. 2. (a) The nonlinear RC system, where Grp(z) represents the RC and PID
controllers. (b) The feedback connection for stability analysis and application of the
Small-Gain theorem. (c) An equivalent feedback connection of (a) for analysis.

where d(γ ) is the density function that controls the shape and size
of the output hysteresis curve. The discrete-time version of the
hysteresis model (4) can be expressed as

v(k) = H[u](k) , f (k) +

n
j=1

d(γ )Pr [u](k), (5)

where f (k) = g0u(k) + g1, k is the time step, and n denotes the
number of play operators.

2.3. Stability of RC with hysteresis effect

Consider the linear discrete-time SISO dynamic system G(z)
with the following controllable canonical form

x(k + 1) = Ax(k) + Bv(k),
y(k) = Cx(k) + Dv(k), (6)

where x = [x1, x2, . . . , xn]T ∈ Rn is the state vector, v, y ∈ R are
the input and output, respectively, and A, B, C,D are of compatible
dimensions. The RC controller and the controller Gc(z) shown in
Fig. 2(a) are lumped into Grp(z) and assumed to have the following
discrete-time state–space representation:

z(k + 1) = Arpz(k) + Brpe(k),

u(k) = Crpz(k) + Drpe(k), (7)

where z = [z1, z2, . . . , zp]T ∈ Rp is the controller state vector,
e = r − y ∈ R is the tracking error, u ∈ R is the controller output,
and Arp, Brp, Crp, and Drp are of compatible dimensions.

For analysis, the system in Fig. 2(a) is converted to an equivalent
feedback connection depicted in Fig. 2(b). To do this, the perturbed
system Hp is defined as

η(k) = Hp[u](k) , v(k) − g0u(k), (8)

where v(k) is the output of the discrete-time P–I model (5), and
u(k) is the output of the controller (7). The unperturbed system
Hu is defined as follows. First, solving for v(k) in Eq. (8) and
substituting the expression into Eq. (6), the following system is
obtained

x(k + 1) = Ax(k) + B[η(k) + g0u(k)],
y(k) = Cx(k) + D[η(k) + g0u(k)]. (9)



Y. Shan, K.K. Leang / Automatica 48 (2012) 1751–1758 1753
Recalling the expression for u(k), Eq. (7), e(k) = r(k) − y(k), and
D,Drp are finite scalars, the output y(k) can be written as

y(k) = Cx(k) + D[η(k) + g0u(k)],

=
1

1 + g0DDrp
[g0DCrpC]


z(k)
x(k)


+

D
1 + g0DDrp

[η(k) + g0Drpr(k)]. (10)

Then, using Eqs. (7) and (10), the system’s closed-loop dynamics
excludinghysteresis can be represented as the unperturbed system
Hu, i.e.,
z(k + 1)
x(k + 1)


= AL


z(k)
x(k)


+ B1r(k) + B2η(k),

u(k) = CL


z(k)
x(k)


+ D1r(k) + D2η(k), (11)

where AL =

Arp −
g0BrpDCrp
1 + g0DDrp

−
BrpC

1 + g0DDrp
g0BCrp

1 + g0DDrp
A −

g0BDrpC
1 + g0DDrp

;

B1 =


Brp

1 + g0DDrp

g0BDrp

1 + g0DDrp

 ; B2 =


−BrpD

1 + g0DDrp

B
1 + g0DDrp

;

CL =


Crp

1 + g0DDrp
−

DrpC
1 + g0DDrp


;

D1 =
Drp

1 + g0DDrp
; D2 =

−DDrp

1 + g0DDrp
.

The transfer relation for the unperturbed dynamics Hu from inputs
r(k) and η(k) to output u(k) can be represented in the following
input–output form:

U(z) = [CL(zI − AL)
−1B1 + D1]R(z)

+ [CL(zI − AL)
−1B2 + D2]η(z),

= G1(z)R(z) + G2(z)η(z). (12)

Therefore, the nonlinear RC system in Fig. 2(a) is converted to the
equivalent structure shown in Fig. 2(c), which is associated with
Eq. (8) (perturbed system Hp) and Eq. (12) (unperturbed sys-
tem Hu).

Next, it is assumed that the RC closed-loop linear system in
Fig. 1 is designed internally stable. By inspection when g0 = 1,
then G1(z) = GL(z), where GL(z) =

U(z)
R(z) = CL(zI − AL)

−1B1 + D1.
Therefore with the closed-loop linear system in Fig. 1 designed
stable, G1(z) is BIBO stable, that is, g0 ≤ MGL , whereMGL represents
the gainmargin of the RC system in Fig. 1. Thenwhat is left to show
is the nonlinear system in Fig. 2(a) is stable if the finite gains of
G2(z) and Hp[u](k) satisfy the Small-Gain Theorem (Khalil, 2002).

Let ∥h∥2 represent the L2-norm of a discrete-time function
h(k), i.e., ∥h∥2 =


∞

k=0 |h(k)|2
1/2. The finite L2-gain of G2(z) in

Fig. 2(c) is determined using Parseval’s theorem (Khalil, 2002). For
example,

∥u2∥
2
2 =

∞
k=0

uT
2(k)u2(k) =

1
2π j


C
z−1U2(−z)U2(z)dz,

=
1

2π j


C
z−1η(−z)GT

2(−z)G2(z)η(z)dz

≤


sup
ω∈S

∥G2(z)∥2

2 1
2π j


C
z−1η(−z)η(z)dz

≤


sup
ω∈S

∥G2(z)∥2

2

∥η∥
2
2, (13)
where z = ejωTs , S ⊂ (0, π/Ts) and C is a contour. Thus, the
L2-gain of G2(z) is

λ1 ≤ sup
ω∈S

∥G2(z)∥2. (14)

In other words, the unperturbed system Hu given by Eq. (12) is
finite-gain L2 stable provided that the supω∈S ∥G2(z)∥2 < ∞ and

g0 ≤ MGL . (15)

The finite L2-gain for the perturbed system Hp is determined as
follows. First, Eq. (8) is rewritten as

η(k) = f (k) +

n
j=1

d(γ )Pr [u](k) − g0u(k), (16)

where u(k) is a piecewise continuous function in k. It is pointed
out that the P–I hysteresis model H[u] is continuous in u (Brokate
& Sprekels, 1996; Janaideh, Rakheja, & Su, 2009); therefore, the
perturbed system Hp[u](k) is piecewise continuous in k and
continuous in u(k). Next, the output of the perturbed system η(k)
is shown to be bounded in the following form: ∥ητ∥2 ≤ λ2∥uτ∥2 +

α, ∀τ ∈ [0, ∞), where α is a nonnegative constant (Khalil, 2002).
Recalling the play operator in the following form

Pr [u](k) = max(f (ki) − γ ,min(f (ki) + γ , Pr [f ](ki−1))),

∀i ≥ 1, (17)

and noting the range property of the play operator in Brokate and
Sprekels (1996), Janaideh et al. (2009), the play operator equation
(17) is bounded above and below via f (k) − γ ≤ Pr [u](k) ≤

f (k) + γ ; hence |Pr [u](k)| ≤ |f (k)| + |γ | and n
j=1

d(γ )Pr [u](k)

 ≤

n
j=1

|d(γ )| |Pr [u](k)|

≤

n
j=1

|d(γ )| |f (k)| +

n
j=1

|d(γ )γ |. (18)

With f (k) = g0u(k) + g1, n
j=1

d(γ )Pr [u](k)

 ≤

n
j=1

|d(γ )| |f (k)| +

n
j=1

|d(γ )γ |

≤

n
j=1

|d(γ )| |g0u(k)|

+

n
j=1

|d(γ )|(|g1| + |γ |).

Then, by the Minkowski inequality (Korn & Korn, 2000), Eq. (16) is
bounded as follows:

∥η(k)∥2 ≤

 n
j=1

d(γ )g0u(k)


2

+

 n
j=1

|d(γ )|(|g1| + |r|) + g1


2

≤


|g0| sup

1≤j≤n
∥d(γ )∥1


∥u(k)∥2 + α, (19)

where α =
n

j=1 |d(γ )|(|g1| + |r|) + g1

2
is a nonnegative

constant. Therefore, the finite gain for the perturbed system Hp
such that it is L2 stable is

λ2 ≤ |g0| sup
1≤j≤n

∥d(γ )∥1, (20)
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a b

Fig. 3. (a) Input versus measured output plot. (b) A play-type operator for the
inverse model with threshold γ ′

i .

where ∥ · ∥1 is the L1 norm. The finite gain λ2 is proportional to
the size of the P–I model’s density function.

Finally, according to the Small-Gain Theorem, the nonlinear RC
system is finite-gainL2 stable ifλ1λ2 < 1; therefore, the nonlinear
closed-loop RC system is input–output stable provided that g0 ≤

MGL [Eq. (15)] and

sup
1≤j≤n

∥d(γ )∥1 <
1

|g0| sup
ω∈S

∥G2(z)∥2
. (21)

As long as the conditions given by Eqs. (15) and (21) are satisfied,
the RC system is stable. In addition, Eq. (21) quantifies the tolerable
size of the hysteresis nonlinearity for a stable RC.

3. P–I feedforward hysteresis compensation

For a system where the hysteresis is unacceptably large, a
feedforward controller is used to compensate for the hysteresis
effect. The hysteresis compensator takes the same structure as
the forward P–I model. The characteristics of the inverse model is
based on the shape of the inverse hysteresis curve, that is, the input
versus output curve shown in Fig. 3(a) (u versus v plot). It is noted
that as the output v increases, the input u increases but traverses
onto an upper branch of the inverse–hysteresis curve. Therefore,
a candidate play-type operator for the inverse–hysteresis model is
shown in Fig. 3(b) and is defined as

P r ′ [v](0) = pr ′(h(0), 0) = 0,

P r ′ [v](t) = pr ′(h(t), P r ′ [h](t)), (22)

where pr ′(h(ti), P r ′ [h](ti)) = max(−h(ti) − γ ′,min(−h(ti) +

γ ′, P r ′ [h](ti−1))), h(t) = g ′

0v(t) + g ′

1 with constants g ′

0 and g ′

1,
and v(t) is the output of the hysteresis behavior. The constant
γ ′ denotes the threshold of the inverse play operator. Finally, the
output of the inverse hysteresis model is

H−1
[v](t) , h(t) +

 R

0
dinv(γ ′)P r ′ [v](t)dγ ′, (23)

where dinv(γ ′) is a density function.

4. The experimental system and modeling

4.1. The experimental nanopositioning system

The control approach is evaluated on the x-axis of a custom-
made three-axis serial-kinematic nanopositioner (see Fig. 4),
where plate-stack piezoactuators (5 × 5 × 10 mm Noliac
SCMAP07) are used to drive the sample platform along the
x, y, and z directions. The nanopositioner has a travel range of
approximately 10 × 10 × 3 µm. The lateral displacement of
the platform is measured by inductive sensors (Kaman SMU9000-
15N). Due to the low mass of the sample platform nested within,
Fig. 4. Custom-made three-axis serial-kinematic piezo-based nanopositioner.

the dominant resonant frequency on the x-axis is about 18 kHz, and
it is just 4.7 kHz for the y-axis because of the larger size andmass of
the y-stage. The positioner is created specifically for scanning-type
applications, such as the rastering movements in AFM imaging
where one lateral axis moves much faster (≥100-times) than the
other axis. Therefore, tracking periodic reference trajectories with
precision is highly desirable.

The experimental setup includes a custom-made analog PID
controller circuit, a field programmable gate array (FPGA) system
(National Instruments cRIO-9002 controller with 16-bit plug-in
analog input and analog output modules) for implementing the RC
and feedforward controllers, a piezo amplifier (gain A = 20 V/V),
and a desktop computer with data acquisition hardware (NI-PCI-
6221, 16-bit resolution, maximum sampling frequency of 250 kHz)
for sending and collecting data. The closed-loop bandwidth of the
FPGA, maximum of 100 kHz, is limited by the sampling frequency
of the input/output modules. The FPGA system is programmed
using the NI-LabVIEW FPGA Toolkit, where the software package
generates the VHDL code, then the code is downloaded to the FPGA
target via an Ethernet cable.

4.2. Dynamics and hysteresis modeling

A linear 9th-order transfer function model G(s) is determined
by curve-fitting the measured frequency response of the nanopo-
sitioner (x-axis). A discrete-time model G(z) is obtained using the
c2d command in Matlab with a sampling frequency of 100 kHz.

The hysteresis model for the x-axis is determined by actuating
the piezo at the full-range displacement of 10 µm using a 1 Hz
triangle input signal. The measured response (solid line) is shown
in Fig. 5(a). Then the command voltage u(t) and the measured
displacement response y(t) are imported to aMatlab least-squares
optimization program to estimate the parameters of the P–Imodel.
Finally, the hysteresis model parameters are optimized to: g0 =

0.8331, g1 = 0.0677, λ = 0.0211, δ = −5.0194 and ρ = 0.1079
for d(r) = λe−δγ . The performance of the P–Imodel is compared to
the measured output in Fig. 5. The results show that the hysteresis
model outputmatches themeasured output well with amaximum
error of approximately 2.1%.

Both models (hysteresis and dynamics) are combined to create
the cascade model structure and the output of this model is com-
pared to the measured open-loop response of the piezoactuator.
The results are shown in Fig. 6 for a ±5 µm displacement range,
scanning at 10Hz, 100Hz, 1 kHzusing a triangle input signal. As can
be seen, the maximum modeling error is approximately 2.05% up
to 1 kHz (plots (a1) through (c2)). Finally, when the piezoactuator
is driven with a 2 kHz sinusoidal input signal, the maximummod-
eling error is approximately 2.12% (see Fig. 6(d1) and (d2)). There-
fore, the cascade model structure is a good representation of the
combined effects of hysteresis and dynamics in the piezoactuator.
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a b

Fig. 5. Comparison between measured hysteresis behavior (solid line) and the output of the P–I hysteresis model (dashed line): (a) time response and (b) the hysteresis
curves. The results show good agreement.
Fig. 6. Experimental validation of the P–I model, H[·], and the linear dynamics
model, G(z). Displacement and error vs. time between measured (solid line) and
model output (dashed line): (a1) and (a2) 10 Hz triangle scanning motion; (b1) and
(b2) 100Hz triangle scanningmotion; (c1) and (c2) 1 kHz triangle scanningmotion;
and (d1) and (d2) 2 kHz sinusoidal scanning motion.

4.3. Inverse P–I hysteresis model

The parameters for the inverse P–I hysteresis model, H−1, are
obtained from the measured input–output data from the forward
model, where the measured output becomes the input to the
inversemodel, and the input becomes themodel output (Fig. 7(a)).
For convenience, the density function is chosen as dinv(γ ′) =

λ′e−δ′γ ′

, where γ ′
= ρ ′j is the threshold of the inverse hysteresis

operator with j = 1, 2, . . . , 8, and λ′, δ′, ρ ′ are real constants. The
constants are found using a nonlinear least-square optimization
function created in Matlab. The parameters are determined as
g ′

0 = 1.1354, g ′

1 = −0.3109, λ′
= 0.0211, δ′

= −1.813 and
ρ ′

= 0.527. It is pointed out that λ′, δ′ and ρ ′ affect the size and
the slope of the inverse hysteresis curve.

Fig. 7(b) shows the performance of the H−1 model to
compensate for hysteresis, where relatively linear response is
achieved. To further validate the inversemodel, theH−1 is applied
to the piezoactuator to compensate for the hysteresis behavior
over different frequencies. By compensating for hysteresis, the
output response is dominated by the dynamic effects, G(z), as
shown in Fig. 8 for a triangular scanning motion at 10 Hz, 100 Hz,
1 kHz, and a 2 kHz sinusoidal scan motion. As the frequency
increases, the resulting loop-like appearance is due to the phase
shift between the input and output, and not the hysteresis effect.
A comparison is made between the measured response and the
a b

Fig. 7. (a) Inverse hysteresis model. (b) The hysteresis curves for the piezoactuator
with (solid line) and without (dashed line) feedforward compensation.

simulated response from just the dynamics model, and the results
show that the maximum error is approximately 1.17% and 1.3%
at 1 kHz and 2 kHz, respectively. The results also show that
the hysteresis effect can be compensated for using the proposed
inverse model, leaving behind only the dynamics behavior.

5. Controller design and implementation

In the controller block diagram shown in Fig. 2(a), Gc(z) is
chosen as a proportional–integral (PI) controller, where the gains
are tuned using the linear dynamics model to Kp = 1.3 and Ki =

40 000 (particularly the Ziegler–Nichols method is used to provide
the starting point for tuning the gains). Next, the RC is designed
based on the dynamics model G(z) and the controller Gc(z). The
process includes designing a low-pass filter Q (z) and phase lead
compensator zm2 to satisfy the condition in Eq. (3) for stability and
robustness; followed by tuning the RC gain krc and zm1 for good
tracking performance. The low-pass filter is Q (z) =

a
z+b with |a|+

|b| = 1. The cutoff frequency is determined by finding the lowest
frequency such that θT (ω) + θ2(ω) is within the ±90◦ (Eq. (3))
bound (Aridogan et al., 2009). The phase response θT (ω)+θ2(ω) is
shown in Fig. 9, and without the phase lead compensator (m2 = 0)
the cutoff frequency is approximately 7.3 kHz. By considering that
themaximumscanning rate is 1 kHz and thehardware limitation of
the FPGA system, the phase lead compensator is selected asm2 = 0
to have a 7 kHz cutoff frequency.

The RC gain is chosen as krc = 0.8 to satisfy Eq. (2). Then the
phase lead zm1 is tuned in simulation by looking at the maximum
tracking error versus different m1 values for tracking a 1 kHz
triangle trajectory over a range of 10 µm. It is determined that
the lowest maximum tracking error is achieved with m1 = 6.
Therefore, the parameters for the RC controller are chosen asm1 =

6,m2 = 0, krc = 0.8 and the cutoff frequency for Q (z) is 7 kHz. In
the experiments, the RC and H−1 are implemented on the FPGA
hardware with a closed-loop sampling frequency of 100 kHz.
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Fig. 8. Validating cascade model by compensating for hysteresis. Comparison of output vs. input plots and error for: (a1) and (a2) 10 Hz triangular trajectory; (b1) and (b2)
100 Hz triangular trajectory; (c1) and (c2) 1 kHz triangular trajectory; and (d1) and (d2) 2 kHz sinusoidal trajectory.
Fig. 9. Phase response [θT (ω)+θ2(ω)] of the feedback closed-loop systemwithout
RC, with phase lead zm2 .

5.1. Quantifying the effect of hysteresis

The effect of hysteresis on RC stability is quantified using the
stability conditions given in Eqs. (15) and (21). First, the gain
margin of the linear RC system is found from the frequency
response of the RC system to be MGL = 20.1 dB (magnitude of
10.12) (Fig. 10). Compared to the constant g0 from the forward P–I
model, g0 = 0.8331 < MGL = 10.12. Thus, the first part of the
stability conditions, Eq. (15), is satisfied.

Now for the second part of the stability condition given by
Eq. (21), Grp(z) is written as Grp(z) =

Gc (z)
1−z−N+m1Q (z)

, where

z−N+m1 = z−94,Q (z) = 0.3558/(z − 0.6442), krc = 0.8,
and Gc = 1.3 + 0.4z/(z − 1) with sampling frequency Fs =

100 kHz. It is then determined that the supω∈S ∥G2(z)∥2 = 5.31,
which implies that 1/|g0| supω∈S ∥G2(z)∥2 = 0.222. Compared
to the sup1≤j≤n ∥d(γ )∥1 = 0.409, the second part of the
stability condition, Eq. (21), is not satisfied. Therefore, direct
Fig. 10. Frequency response of the open-loop linear RC system showing the gain
margin MGL .

implementation of the RC can cause the closed-loop system to be
unstable, likely requiring hysteresis compensation.

6. Simulation and experimental results

6.1. RC stability

The effect of hysteresis on RC stability is studied in simulation
and experiments. The simulation is performed in Matlab using the
RC, Gc(z),G(z), and the P–I hysteresis model. The experiment is
done using the same controllers, where the proportional–integral
controller, Gc(z), is implemented using the analog hardware and
the RC is implemented using the FPGA hardware. Finally, the H−1

is investigated in simulation and experiments to further study the
effect of hysteresis on system stability.

First, the piezoactuator’s hysteresis behavior is modeled by the
P–I approach as shown in Fig. 11 (a1), where its size is determined
to 0.409 by Eq. (21). Using this model, the simulated response
of the RC control system is shown in Fig. 11. It can be readily
seen from the simulation that the size of the nonlinearity causes
the response to exhibit excessive oscillation, indicating the onset
of instability. The experimental results using the same controller



Y. Shan, K.K. Leang / Automatica 48 (2012) 1751–1758 1757
Fig. 11. The effect of hysteresis onRC stability for tracking 1 kHz triangle trajectory:
(a1) and (a2) Size of hysteresis nonlinearity. (b1) and (b2) Simulation results using
hysteresis in (a1). (c1) and (c2) Experimental results for hysteresis in (a1). (d)
Simulation result using hysteresis in (a2).

shows similar behavior as illustrated in Fig. 11. The RC system
begins to show signs of becoming unstable at approximately
4.5 ms, indicating that the hysteresis effect, when significant,
reduces the stability margin of the closed-loop system. However,
the simulated response of the RC controller where the hysteresis
nonlinearity is smaller (Fig. 11(a2)) is stable (see Fig. 11(d)).

6.2. Hysteresis compensation for precision tracking

The PI controller gains can be re-designed to stabilize the sys-
tem, rather than use hysteresis compensation, for example to
kp = 1.1 and ki = 40 000 to satisfy the stability conditions and
for good tracking performances. Experiments are done to evalu-
ate the tracking performance for standard proportional–integral
control andRCwith andwithout hysteresis compensation. Theper-
formance measures of the controllers for tracking triangular refer-
ence trajectories at 10 Hz, 100 Hz, and 1 kHz are listed in Table 1,
comparing the maximum tracking error [emax(%)] and root-mean-
square error [erms(%)]. The tracking error of the 1 kHz example is
shown in Fig. 12, where plot (a), (b), and (c) are the tracking er-
ror versus time and (d) is the displacement versus time at steady
state. It can be seen that the maximum tracking error of the pro-
portional–integral controller combined with the H−1 is reduced
from 13.7% to 12.0%. By using just the proportional–integral con-
troller and the RC, the tracking error is reduced to 4.5%. Finally, the
addition of H−1 lowers the maximum tracking error to 3.9% (71%
Table 1
Steady-state tracking results (% of total range).

Controller 10 Hz 100 Hz 1 kHz
emax erms emax erms emax erms

PI 2.37 1.36 5.52 4.04 13.7 11.42
PI + H−1 1.73 1.10 3.99 2.46 12.0 9.46
PI+RC 0.99 0.42 1.77 0.69 4.50 1.60
PI + RC + H−1 0.72 0.28 1.26 0.46 3.90 1.38

a

b

c

d

Fig. 12. Tracking results for scanning at 1 kHz: (a) Proportional–integral with and
without H−1; (b) PI and RC (without H−1); (c) PI + RC and PI + RC + H−1; and
(d) steady-state displacement versus time.

reduction). In addition to reducing the tracking errors of propor-
tional–integral controller and the RC, the hysteresis compensator
also increases the rate that the tracking error converges, from 4.2
to 3.6 ms, a 14% reduction as shown in Fig. 12(c).

7. Conclusions

This paper focused on analyzing the effect of hysteresis on
the stability of RC. The Prandtl–Ishlinskii model was used to
characterize the hysteresis behavior and the model parameters
were then used to determine the bounds for a stable RC
system. The control approach was implemented on a custom-
design nanopositioning system,where results showed a significant
improvement in tracking performance (such as a 71% reduction in
tracking error).
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