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Feedforward Mutual-Information
Anomaly Detection: Application
to Autonomous Vehicles
This paper describes a mutual-information (MI)-based approach that exploits a dynamics
model to quantify and detect anomalies for applications such as autonomous vehicles.
First, the MI is utilized to quantify the level of uncertainty associated with the driving behav-
iors of a vehicle. The MI approach handles novel anomalies without the need for data-inten-
sive training; and the metric readily applies to multivariate datasets for improved
robustness compared to, e.g., monitoring vehicle tracking error. Second, to further
improve the response time of anomaly detection, current and past measurements are com-
bined with a predictive component that utilizes the vehicle dynamics model. This approach
compensates for the lag in the anomaly detection process compared to strictly using current
and past measurements. Finally, three different MI-based strategies are described and com-
pared experimentally: anomaly detection using MI with (1) current and past measurements
(reaction), (2) current and future information (prediction), and (3) a combination of past
and future information (reaction–prediction) with three different time windows. The exper-
iments demonstrate quantification and detection of anomalies in three driving situations: (1)
veering off the road, (2) driving on the wrong side of the road, and (3) swerving within a
lane. Results show that by anticipating the movements of the vehicle, the quality and
response time of the anomaly detection are more favorable for decision-making while not
raising false alarms compared to just using current and past measurements.
[DOI: 10.1115/1.4064519]
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1 Introduction
The deployment of autonomous vehicles can help reduce

driving-related fatalities and improve road safety [1]. However,
safe integration of this emerging technology requires robust percep-
tion and decision-making in uncertain and complex environments.
Currently, limitations in existing sensing and perception technolo-
gies lead to undesirable outcomes [2]. Recent work to address
some of the challenges include incorporating a layer of safety
through deep neural networks for prediction; unfortunately, large
training datasets are required which can lead to poor robustness to
new and uncertain situations [3]. Herein, a mutual-information
(MI)-based anomaly quantification and detection process with reac-
tive and predictive characteristics is described. This new scheme
can be used to monitor when unusual behavior occurs so that dan-
gerous behavior can be identified and actions can be taken to min-
imize or prevent accidents. The method is applied to autonomous
driving in mobile robots to demonstrate efficacy, as visualized in
Fig. 1.
Anomaly detection is a data-driven process that determines

which event does not follow an expected trend [4]. The process
of quantifying and detecting anomalies is needed in a wide range

of applications, for instance, network monitoring [5], sensor-health
monitoring [6], and autonomous driving [7]. Researchers have
explored many different techniques for anomaly detection [8],
including support vector machine [9]. In Ref. [10], a Bayesian
network is utilized to find outliers in sensor data or to detect
cyber and physical attacks in cyber-physical systems [11]. Cluster-
ing techniques have been employed, including k-means [12],
nearest-neighbor [13], and multiview [14]. One drawback with clus-
tering techniques is that there must be significant separation
between normal and anomalous instances in the feature space,
thus performance cannot be guaranteed [4]. Probabilistic-based
approaches have been used to model normal behavior with Gauss-
ian mixture models [15], non-parametric histograms [16], and
kernel-density estimators [17]. However, since many probabilistic
techniques assume a normal distribution [18], outside of this
regime, the anomaly detection will perform poorly. Machine learn-
ing methods that involve neural networks (NN) [19,20] have been
explored. In Ref. [21], the Kullback–Leibler divergence was incor-
porated as an additional input to a neural network. Even though
many approaches have been introduced for anomaly detection,
the majority of them, specifically, classification and artificial intel-
ligence (AI), require large labeled datasets and are not robust to
novel anomalies [22,23]. Large datasets can be unrealistic to
obtain or may not represent the actual behavior well [24].
More recently, information-theoretic (IT) techniques have been

exploited for anomaly detection. This framework models behavior

1Corresponding author.
Manuscript received November 7, 2023; final manuscript received January 18,

2024; published online February 13, 2024. Assoc. Editor: Vladimir Vantsevich.

Journal of Autonomous Vehicles and Systems OCTOBER 2022, Vol. 2 / 041003-1
Copyright © 2024 by ASME

mailto:sasha.mckee@utah.edu
mailto:osama.s.haddadin@L3Harris.com
mailto:kam.k.leang@utah.edu


as a likelihood and when the likelihood is low, an anomaly is
present. An advantage of IT techniques is that they can encode non-
linear behaviors [25] and work well even with imbalanced datasets,
which is a challenge in many other techniques. Moreover, IT-based
methods require little human involvement compared to other tech-
niques [8]. However, one challenge is the IT framework can be sen-
sitive to changes in the observed pattern [26]. Within the IT space,
various forms of entropy have been proposed to quantify anomalies
[27,28], such as energy measures [24] and Rényi entropy [26].
Revised and approximated forms of MI have been used [25,29]
and combined with deep NN [23]. Many of the works that focus
on MI only deal with selecting feature variables for large datasets
[30,31], find most informative features [32], fuse multiple variables
[33], act as an input to neural networks [6,34], and incorporate cat-
egorical data [35]. In contrast, this paper specifically uses MI to
quantify and detect anomalies, which has not been thoroughly
studied or considered in the past [36]. The closest work on using
the information metric to quantify anomaly is the use of the
Rényi information on network traffic, where the computation was
performed offline [26]. To the best knowledge of the authors, this
work is the first to exploit Shannon’s mutual information to quantify
and detect anomalies for real-time applications such as teasing out
when undesirable behaviors occur in driving. Furthermore, imple-
mentation of existing IT approaches requires current and past mea-
surements, and thus the detection process can exhibit delay [37] and
be problematic for in-the-moment corrective measures. In this
paper, a feedforward component is utilized to predict vehicle beha-
vior to improve anomaly detection response time.
More specifically, this work uses MI to quantify the uncertainty

between the actual and expected behaviors of the vehicle. This
information-theoretic framework can be applied to multivariate
datasets through the common representation of information. This
approach makes no assumptions about the underlying process.
Since a model of the expected behavior is provided, e.g., through
a map, this method is robust to novel anomalies. By incorporating
a predictive (feedforward) component through the dynamics
model of the vehicle, the delay in calculating the MI is minimized
compared to prior works using IT [26]. Many anomaly detection
applications require quantifying anomalies in a timely manner [8]
or predicting anomalies just moments before they occur so that
evasive and defensive maneuvers in autonomous vehicles can be
implemented effectively. The contributions of this paper are as
follows:

(1) Using mutual information to quantify and detect anomalies;
(2) Improving the response time of anomaly detection through a

predictive component involving the vehicle dynamics model;
(3) Studying the performance across three different MI-based

approaches that involve reactive and predictive characteris-
tics; and

(4) Validating the approach using physical experiments involv-
ing example autonomous mobile robots acting as vehicles.

2 Mutual-Information Anomaly Detection
The anomaly detection process comprises of two main steps: (1)

predicting the behavior of the vehicle through the vehicle dynamics
model and (2) quantifying anomalous behavior by mutual informa-
tion, as shown in Fig. 2. An illustrative example of autonomous
vehicles driving on a roadway is used as it demonstrates the basic

capabilities of the algorithm in terms of characterizing when vehi-
cles act anomalously. This method can be applied to other applica-
tions, such as network intrusion detection, by considering the
relevant variables [36].

2.1 Measured and Predicted Vehicle Behaviors. Figure 3
shows the basic configuration of an autonomous vehicle moving
in a 2D plane, where the state of the vehicle is defined by its pose
(position and orientation). In particular, the vehicle’s position is
defined by the Cartesian coordinates of the center of mass of the
vehicle, l= (x, y)∈ L. The orientation (heading) is the vehicle’s
yaw angle ϕ = ψ ∈ Φ, measured relative to the world-frame
X-axis. Using on-board sensors, it is assumed that current and
past position and heading measurements are readily available.
The measured heading direction (ϕ) is used to find an expected
direction of travel, θ, given a map M.
The vehicle’s predicted behavior, YM, is created by a vehicle

dynamics model given the input velocity V (see Fig. 2). The
model can take various forms, but for simplicity and to illustrate
the underlying concepts, the model is assumed to be linear with
the form

YM(s)
V(s)

= T(s) (1)

where V(s) denotes the input velocity, YM(s) is the output of the
model (e.g., vehicle location and orientation), and T(s) is the trans-
fer function that relates the input to output in the Laplace domain.
The anomaly detection process exploits the concept of mutual

information to compare the trajectory of the vehicle to its expected
trajectory based on the map M. The MI will be formulated as a
function of the measured past and current behaviors, and, herein,
the predicted behavior from the dynamics model is further incorpo-
rated to improve the time response. For example, the reactive com-
ponent of the mutual information at time-step k considers current
and past time t∈ [k− n, …, k− 2, k− 1, k] measurements, where
n ∈ N denotes the number of past measurements. Likewise, the
predictive component of the mutual information at time-step k

Fig. 2 Anomaly detection process that combines the vehicle’s
measured state (current and past), YA, and predicted state, YM.
Reactive and predictive outputs are used to calculate the
mutual information quantities. An averaging process creates
the resultant mutual information �I, which is compared to some
threshold, ε, for detecting anomalies.

Fig. 3 Schematic of vehicle and coordinate frames. The vehicle
states, [x, y, ψ], and measurements of location, l, and heading
direction, ϕ.

Fig. 1 Anomaly detection based on vehicle behavior for self-
driving vehicles
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considers future behaviors over the time window t∈ [k, k+ 1, k+ 2,
…, k+m], where window m ∈ N denotes the number of samples in
future time. In addition, the complete time window of consideration
is w= [k− n, · , k− 2, k− 1, k, k+ 1, k+ 2, …, k+m]. Later on, this
time window is used to determine the average MI, denoted by �I,
which is a function of the reactive MI, denoted by IR, and predictive
MI, denoted by IP (see Fig. 2).

2.2 Quantifying Anomaly Using Mutual Information.
Mutual information describes the amount of information associated
with a random variable given the outcome of an event [38]. MI is
used to quantify the vehicle’s expected behavior (based on a
map) with respect to the vehicle’s heading direction. Leveraging
Shannon’s entropy (a measure of uncertainty), the mutual informa-
tion between the vehicle’s direction of travel and its location is

I(Θ; L) = H(Θ) − [H(Θ, L) − H(L)] (2)

where H(Θ) and H(L) are the entropy of the expected direction of
travel and vehicle location, respectively, and H(Θ, L) is the joint
entropy.
A challenge with Eq. (2) is determining the entropy terms and

corresponding probabilities. First, the entropy term H(Θ) is calcu-
lated by

H(Θ) = −
∑k−n
i=k

p(θi) log2 (p(θi)) (3)

where p(θi) represents the probability of the expected angle, θi, for
the ith index, and k represents the current time instance. The entropy
for the location, H(L), is found in a similar manner, e.g.,

H(L) = −
∑k−n
i=k

p(li) log2 (p(li)) (4)

where p(li) is the probability of the location. Finally, the joint
entropy, H(Θ, L), is given by

H(Θ, L) = −
∑k−n
i=k

p(θi, li) log2 (p(θi, li)) (5)

where p(θ, l )= p(θ)p(l ) is the joint probability for both the expected
direction of travel and location (based on a map).
The equations above require that the probabilities be calculated.

For example, the probability of the location is found using the
current set of measurements, L, by

p(l) =
a

ΩL
(6)

where ΩL= unique(L) is the location vector L with non-repeating
values, and a is the number of repetitions for the corresponding
measurement [37]. The probability of the expected direction
given the vehicle’s heading is found as follows. First, the likely
heading angles based upon the measured direction of travel, ϕ, is
found by

p(ϕ) =N (E, σϕ, μϕ) (7)

whereN represents a Gaussian distribution defined by the standard
deviation, σϕ, and mean, μϕ. Additionally, the error is E = ϕ − λ,
where λ ∈ Λ is the possible heading angle given the vehicle
dynamics. Next, the expected direction(s) of travel, γ ∈ Γ, is
found by the measured vehicle location, l,

p(γ) = F (l, M, σM, μM) (8)

which is a function of a given map, M, and associated standard
deviation, σM and mean, μM. Finally, the probability of the
expected direction is determined by combining the likely heading

angles and expected angles, e.g.,

p(θ) = p(ϕ)p(γ) (9)

Intuitively, Eq. (9) describes the probability associated with an
expected direction of travel given the measured heading angle, ϕ.

2.3 Averaging Process. A collection of the MI values is com-
bined to determine a moving average value, �I, which is a function of
the predictive and reactive mutual information metrics, IP and IR
(using Eq. (2)). The average MI, �I, is defined as

�I(IR; IP) = η
1
n

∑k−n
i=k

IR

( )
+ ζ

1
m

∑k+m

i=k

IP

( )
(10)

where η and ζ are weighting terms and η+ ζ= 1. The average is
determined over the desired time window, w, as illustrated in
Fig. 4. The time window will be varied to explore the impact of
the reactive versus predictive MI as well as sliding the time
window relative to the current time-step k (see Fig. 4). An
anomaly is detected when the average MI exceeds the threshold ε.

3 Experimental Setup
3.1 Overview. It has been shown that human error is the major

cause in car accidents. In fact, the leading behaviors are driving: at
high-speed, under the influence (DUI), while distracted, and aggres-
sively [39]. To replicate these scenarios and to characterize
the performance of the anomaly detection process, the following
cases are considered:

• Case 1 (C1): Veering off-road, replicates distracted driving;
• Case 2 (C2): Wrong-way vehicle, represents aggressive

driving by illegally passing a vehicle; and
• Case 3 (C3): Swerving within a lane, mimics DUI.

These cases will be implemented on a simple single roadway inter-
section as shown in Fig. 5. Vehicle behavior within the intersection
conveniently demonstrates anomalous behavior.
For each case, five algorithms (A1–A5) will be compared as

described in the following. The chosen time window is w= 5 s
(see Fig. 4), which is approximately ten times longer than the set-
tling time of the vehicle dynamics (see Sec. 3.3). The average MI
that quantifies anomaly is calculated as follows:

(A1) Reactive MI, where η= 1.0, ζ= 0.0, n=w, and m= 0;
(A2) Predictive MI, where η= 0.0, ζ= 1.0, n= 0, and m=w;

(A3) Reactive–predictive MI 1, where η= 0.5, ζ= 0.5, n =
3
5
w,

and m =
2
5
w;

(A4) Reactive–predictive MI 2, where η= 0.5, ζ= 0.5, n =
1
2
w,

and m =
1
2
w; and

(A5) Reactive–predictive MI 3, where η= 0.5, ζ= 0.5, n =
2
5
w,

and m =
3
5
w.

Fig. 4 Timewindow,w, for calculating the averageMI,�I, for reac-
tive, predictive, and reactive–predictive MI
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In addition, at the start of the experiments, when k is outside of the
time window, the average MI has k−w instances of zeros.

3.2 Tracking Error for Anomaly Detection. A typical proxy
that is often used to detect an anomaly is the vehicle tracking error,
such as the Euclidean distance to the nearest road. This basic metric
will be used as a basis for comparison (i.e., ground-truth tracking
error). The Euclidean distance is defined as

d =
���������������������������
(xk − xM)2 + (yk − yM)2

√
(11)

where (xk, yk) are the Cartesian coordinates of the vehicle’s
center-of-mass at time-step k and (xM, yM) are the Cartesian coor-
dinates to the center of the nearest road. The error value is then con-
verted to an equivalent average MI value through a threshold, r,
corresponding to a radius around the vehicle. In particular, the

pseudo-average MI, �IE, associated with the tracking error is

�IE =
0 d ≤ r

3.2 d > r

{
(12)

where the values 0 and 3.2 bits correspond to the minimum and
maximum MI for the application of interest, respectively. This
pseudo-average MI for the tracking error is compared to the
output of the proposed MI-based algorithms.

3.3 Hardware Setup. The experimental test platform is
shown in Fig. 6. The test platform houses a flat driving surface
that is 16 feet by 12 feet (4.9 m× 3.7 m). The entire test volume
is equipped with a total of 18 Optitrack Flex13 motion capture
(MoCap) infrared cameras, operating at 120 Hz frame rate. A
ground station computer, running Ubuntu 18.04, and the robot oper-
ating system (ROS) Melodic, is connected to the MoCap system
and used to monitor the behavior of each vehicle, perform motion

Fig. 6 The experimental platform equipped with motion capture
(MoCap) infrared cameras and a ground station computer. The
autonomous vehicles are custom-built and controlled on-board
given a trajectory from the ground station. An overhead projector
is used to visualize the road intersection during experiments.

Fig. 5 Roadway intersection showing the measured trajectories
of four different vehicles: (a) case 1 corresponds to veering off
the road (vehicle 3), (b) case 2 shows a wrong-way driving
vehicle (vehicle 2), and (c) case 3 involves a vehicle that
swerves within its lane (vehicle 4)

Fig. 7 Time response for the position (along the x-axis) of the
vehicle, comparing the measured and modeled behavior

Table 1 Estimated gain and time delay of dynamics model

Gain (m/s) Time delay (s)

αx 0.323 βx 0.175
αy 0.305 βy 0.195
αψ 4.900 βψ 0.140

041003-4 / Vol. 2, OCTOBER 2022 Transactions of the ASME



control, and calculate mutual information using measurements and
predicted vehicle behavior to quantify anomalies.
As shown in the inset in Fig. 6, custom-built robotic vehicles

were used in the experiments. Each vehicle carries an Odroid
XU4 single-board computer (SBC), running Ubuntu 18.04 operat-
ing system, and ROSMelodic. The SBC is built on an A7 Octa-core
CPU with 2 GB of LPDDR3 RAM. The SBC is interfaced with
Robotis U2D2 to control the motors on the vehicle. A 4S 1.5-Ah
lithium-polymer (Li-Po) battery is used to power the SBC and

motors. Communication between each vehicle and the ground
station is through a 2.4/5 GHz WiFi module. In addition, the vehi-
cles are position-controlled with a discrete proportional-
integral-derivative (PID) control loop and potential field is used
for obstacle avoidance. The motion-control algorithms were devel-
oped under the ROS framework and ran on the SBC. A sequence of
waypoints is sent to each vehicle from the ground station at approx-
imately 100 Hz, and the on-board position controller continuously
tracks the waypoints. Finally, all mutual information calculations

Fig. 8 Experimental results of the average mutual information, �I, versus time for (a) case 1—
veering off-road with vehicle 3 acting as the anomaly, (b) case 2—wrong-way driving where
vehicle 2 is the anomaly, and (c) case 3—swerving within lane with vehicle 4 acting anoma-
lously. A solid vertical line indicates the anomalous activity start time.
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are conducted on the ground station; however, they can also be
implemented in a distributed manner on board each vehicle.
A model of the vehicle dynamics is obtained by curve-fitting the

measured step response, where the input is a desired vehicle veloc-
ity V. Figure 7 shows the measured vehicle time response in the
x-direction as an illustrative example. The responses in the other
two directions are similar and they are omitted for brevity. By the
nature of the response shown in Fig. 7, an appropriate model of
the vehicle dynamics consists of an integrator with a first-order
Padé time delay, hence

YM(s)
V(s)

= T(s) =
α

s
e−βs ≈

α

s

−β
2
s + 1

β

2
s + 1

⎛
⎜⎝

⎞
⎟⎠ (13)

The transfer function model (Eq. 13) relates the input velocity V(s)
to the vehicle displacement YM(s). The time-delay term is given by β
[40]. The model parameters, α and β, for each vehicle, were found
using a linear least squares fit of the measured response. Table 1
lists the estimated model parameters. As shown in Fig. 7, the pro-
posed model captures the dominant dynamics of the vehicle with
good accuracy. It is pointed out that more complex and sophisticated
models of the vehicle dynamics, including accounting for wheel
slip, steering dynamics, etc., can be used. In general, the use of a sim-
plified model in this work serves to illustrate the basic application
of the concepts proposed. In particular, the model is used to
predict the behavior of the vehicle such that the MI process incorpo-
rates a component of anticipation (prediction) to improve transient
response. Other approaches to predicting vehicle behavior can
easily be incorporated into this MI-based anomaly detection.
The sample frequency used for the experiments is 10 Hz, which

is sufficient given the dynamics of the vehicles of interest.

4 Results and Discussion
The experimental results are presented in Figs. 5 and 8, and

Table 2. First, Fig. 5 shows the measured trajectories of four differ-
ent vehicles (vehicle 1, vehicle 2, vehicle 3, and vehicle 4) as they
traverse the roadway intersection. Each subplot represents a differ-
ent case. Specifically, Fig. 5(a) shows results for case 1 where
vehicle 3 veers off the road; Fig. 5(b) is for case 2 that demonstrates
vehicle 2 driving on the wrong side of the road; and finally Fig. 5(c)
is for case 3 where vehicle 4 swerves within its lane. All other vehi-
cles are operating normally. Next, Fig. 8 shows the corresponding
average mutual information over time for all the cases presented
in Fig. 5. The outputs of the five different MI algorithms (i.e., A1,
A2, A3, A4, and A5) for each case is plotted. Additionally, the MI
version of the tracking error (ground truth), calculated by Eq. (12)
with radius of 0.19 m, is also plotted. Furthermore, the threshold
for detecting an anomalous event is ε = 1.25 bits. This is indicated
on the plots by the two shaded regions where the lower section
(green) is normal behavior and the upper (red) is anomalous. In
addition, a solid black vertical line indicates the time at which the
vehicle acts anomalously. More specifically, for case 1, vehicle 3
starts to act anomalously at t= 80 s. For case 2, vehicle 2 starts to

act anomalously at t= 51 s. Finally, for case 3, vehicle 4 starts to
act anomalously at t= 75 s. It should be noted that none of these
anomalies are known to any of the algorithms or used for training
of any kind, and thus, all results are novel anomalies. Table 2
lists the success rate for all algorithms averaged across all cases
in terms of the percentage of correctness. In other words, quantify-
ing the accuracy of detection by classifying each detection as
follows: correct (C), a false positive (FP), which indicates an
anomaly when the vehicle is not one, as well as a false negative
(FN), which correlates to the detection of a normal vehicle when
it is in fact an anomaly.
Examining the tracking error (ground truth) as a possible means

for detecting anomalies, Fig. 8(a3) for case 1 shows that an anomaly
was detected for vehicle 3. However, this same metric was unable to
detect any anomalies for case 2 or 3, as shown in Figs. 8(b2) and
8(c4), respectively. This led to the tracking-error metric having
the most amount of FN of 3.42% demonstrated in Table 2. By con-
trast, it was observed that the MI-based algorithms were able to
detect all anomalies that were present. This result demonstrates
the utility of the MI-based quantification compared to the
tracking-error proxy. In fact, the MI-based approach presented
can be used to encode additional behaviors to create a more
robust composite metric for anomaly detection. Unfortunately, the
tracking-error metric offers very limited capabilities in terms of
anomaly detection.
In terms of time response for cases 1 and 3, most of the MI algo-

rithms detected the anomaly at the instance that it starts occurring,
e.g., see Figs. 8(a3) and 8(c4). The reactive algorithm (A1) lags by
6–9 s. In case 2, veering on the wrong side of the road, only the pre-
dictive technique, algorithm A2 identified the anomaly at the
instance it occurred while algorithms A3 and A4 lagged behind by
5 s. The remaining algorithms A1 and A5 lagged behind by 7 s.
Even if there is a lag, this technique is still capable of detecting
all anomalies demonstrated, unlike the tracking-error metric. Fur-
thermore, algorithms A3–A5, without any training, demonstrated
an accuracy similar to the tracking-error metric of 95%, as shown
in Table 2, while detecting various anomalies.
The results presented validated that mutual information can be

used as an anomaly quantification and detection scheme. The
approach is able to consider multiple events, e.g., vehicle location
and heading. This technique did not require training and thus all
anomalies detected in these scenarios are novel. Furthermore, by
incorporating a vehicle model the predictive MI algorithms can gen-
erally detect the anomaly at the instance they start occurring, which
is advantageous for real-time decision-making to minimize the
impact of dangerous situations.

5 Conclusions
This paper described a novel mutual-information-based approach

that incorporated a dynamics model to quickly and effectively quan-
tify and detect anomalies for applications such as autonomous vehi-
cles. The experimental results showed that across the five different
MI calculations, the reactive–predictive approach demonstrated the
best overall performance in terms of time response, correctness, and
occurrences of false positive and negative. As expected, the reactive
MI (A1) lagged behind by approximately 5 s, leading to the second-
highest amount of false negative (2.07%) and false positive
(5.36%). However, the purely predictive MI (A2) performed the
worst overall with correctness of just 84.30%, and the highest
false positive score (14.02%). Finally, the three reactive–predictive
MI techniques (A3–A5) performed similarly with correctness near
the tracking-error metric but were further able to detect more
complex anomalies. Furthermore, this method requires no training
and is robust to novel anomalies. However, a suitable model, that
balances quality and computational demand, is needed for good
accuracy. Finally, the mutual information framework with its
ability to encode multiple variables of interest for improved robust-
ness can be applied to other applications, such as network intrusion
detection, which has a large imbalance of data.

Table 2 Results comparing the success of each algorithm
averaged over all scenarios

Average algorithm success

Algorithm C (%) FP (%) FN (%)

Tracking error 95.93 0.65 3.42
A1 (Reactive) 92.57 5.36 2.07
A2 (Predictive) 84.30 14.02 1.68
A3 (Reac.–Pred.) 95.35 3.23 1.42
A4 (Reac.–Pred.) 95.23 3.17 1.62
A5 (Reac.–Pred.) 95.28 3.23 1.49
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