
T
he atomic force microscope (AFM), a
type of scanning probe microscope (SPM),
is one of the foremost nanotechnology
tools for interrogating, controlling, and
manipulating matter at the nanoscale

[1], [2]. The major components of the AFM are
shown in Figure 1. At the heart of this instru-
ment is a small microfabricated cantilever with a
sharp tip (probe) located at its distal end. The
cantilever, whose largest dimension is approxi-
mately several hundred micrometers, is barely visi-
ble to the naked eye. The AFM works by using the
cantilever with a sharp tip as a force transducer to inter-
act with matter at the nanoscale [3]. For instance, the tip is
used as an indentation tool to create nanosized features for
growing quantum dots [4] as well as for imaging in constant-
height or constant-force mode [2]. In the constant-height imaging
mode, the microcantilever and tip are rastered over a sample’s surface at a con-
stant height. Simultaneously, the vertical displacement of the cantilever, the movement of which is caused by
tip-to-sample interaction, is measured and used to construct a three-dimensional image, with subnanometer res-
olution, of the surface topology. Therefore, the AFM is a unique tool for obtaining high-resolution topographical
images, and it also has the ability to directly measure various properties of a specimen. For example, the struc-
tural and mechanical properties of biological specimens such as cells and DNA have been investigated by the
AFM [5], [6], even in real time [7].

Most AFMs use piezoactuators, or piezopositioners, to move and position the cantilever probe relative to the
sample surface in the lateral (x and y) and vertical (z) axes as shown in Figure 1 and Figure 2(a) and (b). The
piezopositioner is made from piezoelectric material, a material that changes its dimensions when an electric field
is applied to it. Compared to traditional actuators such as a dc motor, the piezoactuator is a solid-state device
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with a fast response, no moving
parts, and no friction. The range
of motion of a typical piezoactua-
tor, for example, is in the lateral
scanning direction in AFM, is
approximately 100 μm, roughly
the diameter of a human hair.
Over this range the actuator can
move with subnanometer resolu-
tion. But piezoactuators exhibit
hysteresis and dynamic effects,
the latter being creep and vibra-
tion, which make controlling
their movements a challenge.

Precision positioning is needed
in many AFM applications. In par-
ticular, precise position control in
both the lateral and vertical direc-
tions is needed to hold the probe
at a desired location or to track a
desired motion trajectory. For instance, when the AFM is
used to indent nanofeatures on a semiconductor surface to
create quantum dots (2–80 nm in size), precise position con-
trol of the indenter tip is needed because the probe position
error directly affects the size, spacing, and distribution of
the nanofeatures. Even 2–4 nm variation in size and spacing
of the nanofeatures can drastically alter their properties [8].
Moreover, high-speed control of the probe’s movement is
needed for high throughput fabrication, imaging, and

metrology. Without precise motion control along a specific
trajectory at high speed, oscillations can cause the tip to col-
lide with nearby features, which leads to excessive tip-to-
sample forces. The large forces can damage the probe or soft
specimens such as live cells. Therefore, precise output track-
ing, or positioning, is critical in AFM. The objective of this
article is to describe the method of inversion-based feedfor-
ward control for precise positioning of piezoactuators in
AFMs. Specifically, the discussion addresses the issue of
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FIGURE 1  The key components of an atomic force microscope (AFM). The AFM operates by
using a piezoactuator to scan a small microfabricated cantilever over the surface of a sample.
The tip-to-sample interaction deflects the cantilever as it moves over the surface. The can-
tilever’s deflection is measured by a laser and photodiode. The deflection can be used, for
example, to create an image of the surface.
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FIGURE 2  The movement of the piezoactuator and cantilever in atomic force microscope (AFM) imaging. (a) A top view of the AFM scan
path that shows the tip’s path during imaging. The tip starts at the center of the sample and then moves to the upper left-hand corner. From
the corner, the tip rasters back and forth across the sample in the x direction. At the same time the tip moves slowly in the y direction dur-
ing imaging. (b) The lateral x and y scan paths versus time. The movement of the piezoactuator in the x direction is significantly faster than
the movement in the y direction. (c) The frequency response of the piezoactuator dynamics in the x direction, where the input is the applied
voltage u and the output is the displacement signal x. The frequency response shows a sharp resonant peak. The sharp resonant peak lim-
its the open-loop operation of the AFM to low frequencies.
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inverting a dynamics model to account for vibration and
creep and then inverting a hysteresis model to compensate
for hysteresis in piezoactuators. Some attention is given to
alternative methods for dealing with hysteresis, such as
using high-gain feedback control and iterative control.

THE EFFECTS OF DYNAMICS AND 
HYSTERESIS ON AFM IMAGING
The precision and operating speed of AFMs are limited by
essentially two major issues, dynamic and hysteresis effects
of the piezoactuator. Other considerations, such as the can-
tilever dynamics and the dynamics of the mechanical fix-
tures that connect the cantilever to the piezoactuator, are
also important. For example, in AFM imaging and force-
curve measurements, the dynamics of the AFM between
the piezoactuator voltage and the cantilever deflection
along the z-axis include the dynamics of the piezoactuator,
the AFM cantilever, and the mechanical fixtures. 

The dynamic effects in piezoactuators include move-
ment-induced oscillation, called vibration, and the creep
effect. The amount by which the dynamics affect the output
response of the piezoactuator depends on the input’s fre-

quency. When the input frequency is close to the resonance
frequencies, vibration becomes noticeably large in the
piezoactuator’s output response. The large vibration is
caused by exciting the resonant modes of the actuator [9].
Piezoactuators tend to be highly resonant structures due to
their high stiffness and low structural damping. As a result,
a sharp peak appears in the frequency response as illustrat-
ed in Figure 2(c). Therefore, input signals such as sawtooth
signals can excite the piezoactuator’s resonances, causing
the output to oscillate or vibrate as shown in Figure 3(a).

Oscillations in the piezoactuator’s lateral response can
cause artifacts, such as ripples, which distort the resulting
AFM images as depicted in Figure 3(b). To illustrate the
source of these ripples, consider that the AFM cantilever
and tip are rastered back and forth along the x-axis while
simultaneously moving slowly from top-to-bottom along
the y-axis [Figure 2(a) and (b)]. As the probe moves from
left to right, the cantilever’s vertical response is recorded at
a constant sampling rate. Each value is associated with a
desired probe position (xd, yd). The existence of lateral
positioning error between the probe’s desired and true
position means that a cantilever’s recorded vertical

response does not agree with
the expected lateral position.
This discrepancy produces
image distortion; in particular,
the repeating vertically aligned
corrugated appearance (ripples)
in the image in Figure 3(b) is
due to the repetitive nature of
the lateral oscillations, from one
scan line to the next. Also, such
positioning errors can cause dis-
tortions in fabricated features
when the AFM is used for
nanofabrication.

One approach for avoiding
vibration is to operate the
piezoactuator at low speed.
Scan speeds that are 20–100
times lower than the frequency
of the dominant resonant peak
are typically used [10]. This lim-
itation, however, renders the
AFM ineffective for high-speed
applications. Another approach
for improving the operating
speed of the AFM is to use
stiffer piezoactuators that have
higher resonance frequencies
[7], [11]. By shifting the reso-
nance frequency to a higher
value, the scan frequency at
which vibration is significant
becomes higher. The major

FIGURE 3  Distortion due to dynamic and hysteresis effects in atomic force microscope (AFM)
imaging. (a) A plot of the measured displacement of the piezoscanner versus time at 50 Hz. The
high-frequency scanning at 50 Hz excites the vibrational dynamics. The dynamics cause oscilla-
tions, which appear in the output displacement. (b) An AFM image taken at high frequency, which
shows ripples caused by the vibrational dynamics. (c) A plot of the piezoscanner’s measured dis-
placement versus time for scanning at 1 Hz over a large range of ±30 μm. The curved shape in
the measured response is caused by hysteresis. (d) An AFM image taken at 1 Hz over a large
range, which shows the distortion caused by hysteresis. The actual features are parallel.
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drawback, however, is that the range of motion of stiffer
piezoactuators is reduced. 

Feedback control can help reduce the vibration effect at
high operating speeds [12]–[14]. Unfortunately, there are
several challenges. First, piezoactuators have low structur-
al damping, which results in low stability margins [15].
Second, feedback control is sensitive to sensor noise, which
can limit the achievable precision.

At slow operating speeds, creep is a major source of
positioning error. Creep in piezoactuators is a low-fre-
quency behavior, where the output drifts, especially when
the operation is offset from the center of the piezoactua-
tor’s positioning range. Without creep compensation, the
AFM cannot be used for slow and static applications. For
instance, creep makes it difficult to precisely fabricate
nanofeatures using AFMs when the process time scale is
on the order of minutes [16]. Creep in piezoactuators is
analogous to creep in mechanics, where a constant load
causes a material to slowly deform [17]. In the case of
piezos, however, creep manifests itself as a remnant polar-
ization that slowly increases after the onset of an electric
field. Creep is negligible when the piezoactuator is operat-
ed at sufficiently high frequency [10].

Finally, hysteresis is significant over large-range dis-
placements [12]. Hysteresis, which is a nonlinear behavior
between the applied electric field and the mechanical dis-
placement of the piezoactuator, is believed to be caused
by irreversible losses that occur when similarly oriented
electric dipoles interact upon application of an electric
field [18]. An example of hysteresis is shown in Figure
3(c), where a 1-Hz triangular input signal is applied to the
AFM piezoactuator and the measured output (±30 μm)
shows hysteresis-caused distortion. The distortion in the
piezoactuator output then leads to distortion in an AFM
image as shown in Figure 3(d). The actual features are
parallel, but because of hysteresis they appear curved.
Another aspect of hysteresis is that the output depends on
the input history,  known as the memory effect [19].
Therefore, between some initial and final time, two identi-
cal inputs can yield completely different output respons-
es. This discrepancy occurs because of differences in the
histories of the inputs prior to the initial time.

Operating piezoactuators in their linear range helps
avoid hysteresis. In general, the linear range tends to be
within 10% of the maximal range of motion. Charge con-
trol, as opposed to voltage control, of a piezoactuator is an
alternative method for minimizing the hysteresis effect.
This approach requires the design of a charge-feedback cir-
cuit [20]. Also, the Preisach approach is studied in [21]–[24]
for hysteresis compensation.

The hysteresis and dynamic effects are coupled [10]. For
instance, when the movement of the piezoactuator is large
and slow, the piezoactuator exhibits hysteresis and creep
effects. As the frequency of the input increases, the
piezoactuator’s output response shows the addition of the

vibrational dynamics as large oscillations and ripples
begin to appear. Therefore, the coupled behaviors make
precise control of the AFM probe a daunting task. These
coupled effects can be addressed with feedforward control
based on a cascade model. Next, the cascade model is dis-
cussed, followed by describing an inversion-based feedfor-
ward method for dynamics and hysteresis compensation.

INVERSION-BASED FEEDFORWARD CONTROL 
OF DYNAMIC AND HYSTERESIS EFFECTS
Unlike feedback control, which reacts to the measured
tracking error, feedforward control compensates or antici-
pates for deficit performance. A feedforward controller
does this by exploiting a priori information about the sys-
tem, and thus a well-designed feedforward controller
requires sufficient knowledge of the plant dynamics and
nonlinearities. In this case, the models are inverted to com-
pensate for dynamic and hysteresis effects.

AFM applications can be divided into two categories,
those that involve nonrepeating trajectories and those
based on repeating motion. Applications with nonrepeat-
ing trajectories include nanofabrication and nanomanipula-
tion, where the probe tip is required to track a user-defined
trajectory once or a few times. Applications with repeating
trajectories include imaging, where the piezoactuator is
used to scan or raster a probe tip back and forth across a
sample surface. The scanning motion in this case repeats
from one cycle to the next. The main difference between the
two categories is the ability to use iterative methods for the
repeating motion case as outlined in Figure 4.

A Cascade Model for Feedforward Control
Inversion-based feedforward control exploits information
about the system. Therefore, an input-output model for
the piezoactuator is needed. The effects of vibrational
dynamics, creep, and hysteresis on the output of a
piezoactuator are intertwined. To model these behaviors,
the cascade model depicted in Figure 5(a) and (b) is used.
The range-dependent hysteresis effect is treated as a rate-
independent, input nonlinearity represented by H. The
vibrational dynamics and creep effects are captured by the
linear dynamics model G(s). The cascade model structure
is used extensively to model piezoactuators and similar
systems [10], [25].

To find the feedforward input for precision output
tracking, each submodel is inverted. More specifically,
the feedforward control input uf f is obtained by passing
the desired output trajectory yd through the inverse mod-
els of the dynamics and hysteresis in reverse order as
illustrated in Figure 6.

An Inversion-Based Feedforward 
Approach  for Dynamic Compensation
Described next is an inversion-based feedforward
approach that compensates for the dynamic effects. Here,
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the dynamics include vibration and the creep effect. The
objective is to find a feedforward input uf f (t) by inverting
the model G(s) for precision tracking of the desired trajec-
tory yd(t). One key feature of this feedforward approach is
that it can be applied to nonminimum-phase systems
[26]–[28]. Although the dynamic effects are specifically
addressed in this section, the approach can be combined
with alternative feedforward or feedback methods that
compensate for hysteresis when the range of motion
becomes large [15].

Let G(s) represent the transfer function of the piezoac-
tuator’s dynamics, where the input is the applied voltage
and the output is the displacement. Consider the minimal
state-space realization of G(s), given by 

ẋ(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t), (2)

where x(t) is the state vector, u(t) is the input, and y(t) is
the output, for example, the displacement along one later-
al (x or y) axis. To simplify the presentation, the piezoac-
tuator system is assumed to be single-input, single-output
(SISO). This approach is equally applicable to multi-input,
multi-output (MIMO) systems. To find the feedforward
input uf f (t) that exactly tracks the desired output yd(t) of
the system (1), (2), the output equation (2) is differentiated
until the input appears explicitly in the expression. Hence, 

y(r)(t) = CArx(t) + CAr−1Bu(t), (3)

where CAr−1B �= 0, r is the relative degree of the system
(1), (2), and the superscript (r) denotes the rth time deriva-
tive. For a SISO system, the relative degree r is the differ-
ence between the number of poles and zeros of G(s). Thus,
the inverse feedforward input uf f (t) that tracks the desired
trajectory yd(t) can be obtained directly from (3) by replac-
ing y(t) with the desired output yd(t), that is, 

uf f (t) = (CAr−1B)−1
[

y(r)
d (t) − CArxref(t)

]
. (4)

The inverse feedforward input (4) shows that finding the
inverse input uf f (t) is equivalent to finding the reference
states xref(t). In other words, a bounded solution for xref(t)
is needed.

Under a state transformation, a portion ξd(t) of the refer-
ence states xref(t) is specified by the desired output and its
derivatives, up to r − 1 derivatives. Thus, for a given desired
trajectory, ξd(t) is known. Then it remains to find the unknown
reference states η(t) to determine the feedforward input (4). 

The unknown reference states η(t) are found by solving
the associated dynamics for a given desired output trajecto-
ry yd(t). The inverse input (4) is substituted back into (1), (2)
and then rewritten in the transformed coordinate [ξd, η]T .
The unknown reference state equation becomes [28]

η̇(t) = Âηη(t) + B̂ηYd(t), (5)

where Yd(t) is the vector consisting of the desired output
yd(t) and its derivatives up to the rth order. The details
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FIGURE 4  An overview of inversion-based feedforward. The left column describes the preferred feedforward method for AFM applications
that involve nonrepetitive trajectories. The right column deals with applications that involve repetitive trajectories and in which control based
on iteration is allowed.
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about Âη and B̂η can be found in [28]. Equation (5) consti-
tutes the internal dynamics of system (1), (2).

It can be shown, for example  in [29], that the poles of
the internal dynamics (5) are exactly the zeros of (1).
Therefore, if the system is nonminimum phase, the internal
dynamics (5) are unstable, and the goal is to find a bound-
ed solution to the internal dynamics η(t). This objective is
addressed by the stable inversion theory [27], [28].

Stable inversion of unstable internal dynamics is based
on the concept of noncausality. The internal dynamics (5)
of a system without any zeros on the imaginary axis can be
decoupled into the stable σs and unstable σu dynamics
through a state transformation, that is,

σ̇s = Asσs(t) + BsYd(t), (6)

σ̇u = Auσu(t) + BuYd(t). (7)

See [30] for the case of systems that have pure imaginary zeros.
The stable internal dynamics

(6) are associated with the mini-
mum-phase zeros, that is, the
eigenvalues of As in (6) lie in the
open left-half complex plane.
Likewise, the unstable internal
dynamics (7) are associated with
the nonminimum-phase zeros,
that is, the eigenvalues of Au in
(7) are in the open right-half com-
plex plane. Then the bounded

solution to the unstable part of the internal dynamics can
be solved by flowing the dynamics backwards in time,

σu(t) = −
∫ ∞

t
eĀu(t−τ)B̂uYd(τ)dτ. (8)

Therefore, (8) implies that to obtain the current value of the
internal dynamics as well as the current value of the
inverse input (4), the desired output trajectory must be
specified in advance; thus, the stable inversion is non-
causal. In many applications, such as the lateral scanning
trajectory for AFM imaging, the desired trajectory is known
a priori. For applications in which the desired trajectory is
not completely known in advance, a preview-based stable
inversion approach can be used [28], [31]. Basically, the pre-
view-based approach computes the inverse input using the
desired trajectory within a finite time window. Finite pre-
view of the desired trajectory is feasible in many applica-
tions. For example, in AFM-based nanomanipulation and
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FIGURE 5  A cascade model structure for hysteresis, vibrational dynamics, and creep effects in piezoactuators. (a) This model shows the
three effects as separate blocks. Hysteresis is modeled as an input nonlinearity that is output-range dependent. The input-frequency-
dependent vibrational dynamics and creep effects follow the hysteresis block. (b) The block diagram of the cascade model. The hysteresis
is denoted by H, while the linear dynamics model G(s) captures the vibrational dynamics and creep effect.
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nanofabrication, it may be required to drive the AFM-probe
to follow a real-time, user-specified trajectory. Therefore,
finite preview of the future desired trajectory is available,
and the preview-based inversion technique is applicable. In
short, this technique tracks the user’s motion with a delay
time that equals the preview time. This delay is usually
acceptable in nanomanipulation applications.

The Optimal Inverse Approach
The inversion-based method presented above may yield
excessively large inputs when the system has lightly
damped system zeros. These large inputs can saturate the
voltage amplifiers that drive the piezoactuator, or, even
worse, depole the piezoactuator. Additionally, large model
uncertainties around the resonant peaks or lightly damped
zeros can cause significant error in computing the feedfor-
ward input. These model uncertainties thus lead to a lack
of robustness when the inversion-based feedforward
method is used. The following optimal inversion approach
is used to account for these issues. Specifically, an optimal
feedforward input is obtained by minimizing the quadratic
cost function [32]

J(u) =
∫ ∞

−∞
{u∗( jω)R( jω)u( jω)

+ [x( jω) − xd( jω)]∗Q( jω)[x( jω) − xd( jω)]}dω, (9)

where * denotes conjugate transpose and R( jω) and Q( jω)

are nonnegative, frequency-dependent real-valued weights
on the input energy and the tracking error, respectively.
The optimal feedforward input uf f,opt that minimizes (9) is

uf f,opt( jω) =
[

G∗( jω)Q( jω)

R( jω) + G∗( jω)Q( jω)G( jω)

]
yd( jω). (10)

By choosing the frequency-dependent weights R( jω) and
Q( jω), it is possible to systematically consider the effects of
the input magnitude and the model uncertainties. For
instance, the input energy weight R( jω) can be chosen to
be much larger than the tracking error weight Q( jω) at fre-
quencies where large model uncertainties exist or around
lightly damped zeros. For details and implementation
issues, see [33] and [34].

Inversion-Based Feedforward Hysteresis Compensation
The Preisach hysteresis model [19] has been studied exten-
sively to characterize rate-independent hysteresis in piezo-
electric materials [24] as well as many hysteretic systems,
including shape memory alloy devices [35]. This model
assumes that the output v(t) of a hysteretic system is the
sum of weighted elementary relays R as given by

v(t) = H[u](t) �
∫∫
α≥β

μ(α, β)Rα,β [u](t)dαdβ, (11)

where μ(α, β) is the weighting value associated with the
elementary relay Rα,β . Each relay can switch between
two states, specifically, +1 and −1, depending on the
value of the input u. The switching between the states
+1 and −1 occurs when the input exceeds a relay’s
lower or upper switching threshold, β and α, respec-
tively, where it is assumed that α ≥ β . The relays repre-
sent, for example, the switching behavior of individual
electric dipoles within the piezoelectric material [36].
See [19] for a detailed discussion of the Preisach model
and its properties. 

The Preisach hysteresis model can be obtained exper-
imentally from measured output data, for instance, by
applying an appropriate input voltage and measuring
the piezoactuator’s displacement. Several approaches
are available for estimating the Preisach weighting sur-
face μ(·, ·) from the data [35], [37]. One approach is to
generate a collection of first-order descending (FOD)
curves, compile the curves into a FOD surface, and then
differentiate the FOD surface to find an estimate of the
Preisach weighting surface μ(·, ·) [19]. Although the
method is straightforward, the differentiation process
can amplify noise in the measured data, thus creating
significant error. An alternative, and more favorable
approach, is to find μ(·, ·) by discretizing the Preisach
plane and using a least squares technique to determine
the values of μ at a finite number of locations in the
Preisach plane P � {(α, β)|α ≥ β; u ≤ α;β ≤ ū}, where u
and ū are the minimal and maximal input values,
respectively [37], [38].

Rather than invert the Preisach model for feedforward
compensation of hysteresis, an inverse-Preisach model can
be found directly from the measured input and output
data. The inverse model is found using the same method
to find the traditional Preisach model; however, the roles
of the input and output are reversed. It is shown in [10]
that when the input u(t) is considered as the output and
the output v(t) is considered as the input, the inverse
Preisach model takes the form 

u(t) = H−1[v](t) �
∫∫

α̂≥β̂

γ (α̂, β̂)R
α̂,β̂

[v](t)dα̂dβ̂, (12)

where the parameters α̂, β̂ , γ (α̂, β̂), and the elementary
relay R

α̂,β̂
are associated with the inverse-Preisach model.

Like the traditional Preisach model, it is assumed that the
nonlinearity operates within closed major loops; therefore,
the weighting function γ (α̂, β̂) is zero outside of the upper
triangle defined by the boundaries α̂ = β̂ , α̂ = v̄, and
β̂ = v, where v̄ and v are the upper and lower bounds on
the output, respectively.

With the inverse model in hand, a desired output trajec-
tory is passed through the inverse model to generate an
input that compensates for hysteresis effect. The results of
this technique for AFM are presented below.
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Inversion-Based Feedforward Hysteresis 
and Dynamics Compensation
When an AFM application calls for large-range and high-
speed motion, both hysteresis and dynamics compensation
are required for precision output tracking. In this case, the
feedforward control input uf f (t), which accounts for both
the dynamic and hysteresis effects, is obtained by passing
the desired output trajectory yd(t) through the inverse
models in reverse order as depicted in Figure 6. This
process is performed offline, followed by applying the
feedforward input to the piezoactuator. First, the dynamic
inverse produces an output vf f (t). The output from this
first stage then becomes the input to the inverse-Preisach
model, which produces the final feedforward input uf f (t)
to compensate for both hysteresis and dynamics.

AFM IMAGING APPLICATION

Modeling the Dynamic Effects
The transfer function models for the vibrational dynamics
and creep effects are obtained by curve fitting the measured
frequency and time responses of the piezoactuator over
appropriate frequency ranges. 

The experimental results described herein come from a
piezoactuator (piezoscanner) in a Burleigh AFM. Lateral
positioning is achieved using a tube-shaped piezoactuator
with quarter-sectored electrodes, which enable control of the
positioning in the x and y axes (see Figure 7). The positioning
of the AFM probe in the vertical z-axis is controlled by a sep-
arate piezoactuator. The vertical motion control is not con-
sidered here, but rather the focus is on controlling the lateral
motion of the piezoactuator for AFM imaging. The piezoac-
tuator’s lateral movements are measured with optical dis-
placement sensors with submicron resolution.

To find the vibrational dynamics model, which relates
the input u to the displacement x or y, the first step is to
measure the frequency response using a dynamic signal
analyzer. The response is measured over a displacement
range of less than 10% of the maximal range to avoid the
hysteresis effect. To avoid creep, the response is measured
over a wide frequency range, in this case, 1 Hz to 2 kHz. The
solid line in Figure 8 shows the measured frequency
response curve for the piezoactuator in the x axis.

Using a system identification algorithm, such as the
function “invfreqs” in Matlab, a transfer function model
is fitted to the measured response. The dash line shown
in Figure 8 is the model given by (13), as shown at the
bottom of the page.

At very low speed, the creep effect is significant. This effect
can be described by the Kelvin-Voigt model, which consists of
spring (ki) and damper (ci) elements [39]. The lumped-para-
meter model shown
in Figure 9 is linear,
and its transfer
function is 

Gc(s) = x(s)
u(s)

= 1
k0

+
n∑

i=1

1
sci + ki

, (14)

where x(s) is the displacement of the piezoactuator and u(s) is
the applied input voltage. In (14), k0 models the elastic behavior
at dc, and the creep behavior is captured by selecting an appro-
priate model order corresponding to the number of spring-
damper elements n. The parameters k0, ki, and ci of (14) are
determined by curve fitting the step response of the piezoactua-
tor over, for example, a three-minute period as shown in Figure
9. The second-order model (n = 2) in Figure 9 is

Gc(s) = 0.4s2 + 9.9s + 7.5
s2 + 20.9s + 14.7

. (15)

Vibrational Dynamics Compensation
To illustrate the application of the inversion-based
approach for dynamics, the vibrational dynamics model
Gv(s) is inverted to find a feedforward input uf f (t) that
tracks a given desired trajectory xd(t), that is, the desired
trajectory along the fast-scanning x-axis. In the experi-
ments the range of motion is less than 10% of the maximal
range. Over this range, the hysteresis effect is negligible.
The desired scan frequency is chosen greater than 1 Hz to
reduce the creep effect.

FIGURE 7  An electrode configuration for a tube-shaped piezoactua-
tor in an atomic force microscope. (a) The input voltage u drives the
piezoactuator in the x direction. The x-direction displacement is
measured by an optical or inductive sensor. (b) The wiring diagram
shows how the electrodes are connected to the piezoactuator.

Piezoactuator
x
y

z

Displacement
Signal x

Displacement
Sensor

x

u

u
(b)

(a)

Gv(s) = 7.2 · 1013s2 + 2.3 · 1016s + 3.2 · 1021

s6 + 1.1 · 104s5 + 9.5 · 107s4 + 7.0 · 1011s3 + 2.0 · 1015s2 + 5.6 · 1018s + 1.0 · 1022 . (13)
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The fast scanning axis in the x direction tends to be 100
times faster than the motion in the y axis during AFM
imaging. For instance, a 100 × 100 pixel image implies

that the probe rasters back and forth across the sample
100 times per image acquired (see Figure 2 for the scan
pattern). Therefore, the fast scanning motion in the x

direction excites the mechanical reso-
nances of the piezoactuator, causing the
output to oscillate. The oscillations sub-
sequently cause unwanted ripple-like
distortion to appear in the AFM image
as described above. 

To compensate for the dynamic effects,
the inversion-based approach is used to
determine a feedforward input to be
applied to the piezoactuator. Figure 10
shows the feedforward control scheme,
along with the AFM imaging results over
the small range for (b) without feedfor-
ward compensation and (c) with feedfor-
ward compensation. The inversion process
for a prespecified desired trajectory is
directly implemented in frequency
domain using the fast Fourier transform
(FFT) algorithm in Matlab. In the experi-
ment, the range of motion is approximate-
ly 10 μm to minimize the hysteresis effect.
Figure 10(a) shows ripples caused by the
vibrational dynamics for a 30-Hz scan.
Lightly colored vertical bands are evident
of the vibration effects. When the

FIGURE 9  Modeling the creep effect in a piezoactuator. (a) The
spring-damper model is used to model the creep effect. The para-
meters of the model are found by curve fitting the measured step
response of the piezoactuator. (b) The time response shows the
measured step response (solid line) and the linear creep model
(dashed line).
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FIGURE 10  Feedforward control of the linear vibrational dynamics to
achieve high-speed positioning over small range. The (a) block dia-
gram shows the feedforward control scheme, where the linear vibra-
tional dynamics model G(s) is inverted to compensate for vibration
effects. The atomic force microscope images are acquired (b) with-
out feedforward compensation and (c) with feedforward compensa-
tion. The feedforward input reduces the ripples caused by vibration.
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FIGURE 8  The frequency response of a piezoactuator for modeling the vibrational
dynamics. These plots show the measured frequency response (solid line), the magni-
tude and phase versus frequency of the piezoactuator over ±2-μm displacement range.
The dash line is the linear vibrational dynamics model.
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feedforward input is applied, the image shows significantly
fewer ripples. In particular, the edges that separate the light
and dark regions in the image show less oscillations in their
appearance. Artifacts caused by minute particles on the sam-
ple’s surface along the black/white edges and in the lower
left-hand corner can be seen in both images. 

Feedforward Dynamics and Hysteresis Compensation
The vibrational dynamics, creep, and hysteresis effects are
accounted for using the inversion-based approach as present-
ed in the control scheme shown in Figure 11. Both the
dynamic and hysteresis effects are inverted for precision posi-
tioning. In particular, the optimal inverse is used to compute
the feedforward input for a given desired output trajectory
xd(t). Then, the computed input is passed through the
inverse-Preisach model to generate the feedforward input
uf f (t). The resulting input compensates for dynamic and hys-
teresis effects. The image in Figure 11(b) is acquired without
feedforward compensation. The features appear slightly
curved because of hysteresis and the ripples show the effect
of the dynamics. These distortions are compensated for by
applying the feedforward input uf f (t) to the piezoactuator as
shown by Figure 11(c).

Feedforward and High-Gain Feedback Control
Modeling and inverting the dynamic and hysteresis effects
are effective methods for precision positioning in AFM

[10], [33]. However, because the approach exploits knowl-
edge of the piezoactuator behavior, the modeling process
can be time consuming, particularly when both the inverse
dynamics and inverse hysteresis are used. If a simpler
method to account for hysteresis is preferred over the con-
trol performance, then high-gain feedback can be used to
linearize the nonlinear behavior of the piezoactuator. The
vibrational dynamics are modeled, inverted, and com-
bined with the feedback controller as shown in Figure 12.
However, when feedback is used, piezoactuators often
exhibit low gain margin and can cause instability. For
example, the frequency response of the piezoactuator
depicted in Figure 8 shows a −17.05-dB gain margin. This
low gain margin is attributed to the low structural damp-
ing and higher order dynamics (poles) that combine to pull
the system’s phase response below the −180◦ mark. There-
fore, the feedback gain is severely limited, and a high-gain
closed-loop system can potentially become unstable.

Gain margin can be improved by cascading the piezoac-
tuator with a notch filter D(s), which cancels the effect of
the sharp resonant peak [15]. In Figure 12, the notch filter
raises the gain margin, for example from −17.05 to 30.86
dB, enabling the use of high gain feedback to minimize the
hysteresis behavior.

With the improved gain margin, a proportional-derivative
(PD) feedback controller is combined with the feedforward
controller for AFM imaging. Proportional-integral-derivative

FIGURE 11  Feedforward control of dynamics G(s) and hysteresis H for
large-range, low- and high-speed positioning. The (a) feedforward con-
trol input uff (t) is obtained by passing the desired output trajectory xd(t)
through the inverse models of hysteresis and dynamics in reverse
order. The atomic force microscope images are acquired (b) without
feedforward compensation and (c) with feedforward compensation. The
feedforward input minimizes hysteresis, vibration, and creep. (These
images from [10] are presented with permission from ASME.)
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feedback controllers can also be used [12], [14]. The results of
the feedback and feedforward controller are shown in Figure
12. A scan of a calibration sample over a large range with
only PD feedback control is shown in Figure 12(b). Although
hysteresis is not noticeable in the image, the effect of vibration
is significant at a scan rate of 30 Hz. But when the feedfor-
ward input is added to the feedback-controlled system, the
ripples are greatly reduced as shown in Figure 12(c). There-
fore, the use of feedback with a feedforward input computed
from the linear dynamics model avoids the need to model
and invert the hysteresis behavior. The addition of feedback
also improves the robustness to adverse effects including sys-
tem dynamics variations and disturbances. 

Validating the Cascade Model for Piezoactuators
The inversion-based feedforward approach can also be
applied to validate the cascade model for modeling the
dynamics and hysteresis in piezoactuators. First, when
the displacement range of the piezoactuator is within the
linear range, hysteresis is negligible, and the output
exhibits only linear dynamics [10]. But when the piezoac-
tuator is operated outside of its linear range, the inver-
sion-based approach is applied to compensate for the
hysteresis effect. In the end, the large- and small-range
outputs are measured and compared to see whether the
cascade model is acceptable.

The block diagram in Figure 13(a) outlines an experiment
where hysteresis is compensated for by using an iteration-
based method. The details of this method are described in
[40]. First, a 100-Hz triangle input is applied to the piezoac-
tuator, causing it to move over a small range of ±1 μm. In
this case, the output response shows oscillations caused by
the vibrational dynamics because hysteresis is negligible
over the small range [see Figure 13(b)]. Next, the feedfor-
ward input from the iteration-based approach that accounts
for hysteresis is applied to track a 100-Hz triangle trajectory
over a larger range of ±25 μm. The output in this case is
measured and denoted by v1. Then the output v1 is com-
pared to the ±1-μm-range output scaled by 25, denoted by
25v2 , as shown in Figure 13(b). The maximum and root-
mean-square of the difference v1 − 25v2 are 6.09  and 1.63%
of the full ±25-μm range, respectively. The small error val-
ues suggest that the cascade model is acceptable for model-
ing piezoactuators over the specific frequency range.

An additional experiment is performed to check
whether the hysteresis is rate independent. The idea is to
compensate for the dynamic effects at various frequencies
and then compare the results. The experiment is described
by the block diagram in Figure 14(a), where the output of
the piezoactuator is passed through the inverse of the
dynamics. The experimental details are covered in [40].
The results shown in Figure 14(b) compare the response

FIGURE 14  Experimental results for checking whether hysteresis is
rate independent using the inversion-based approach. The (a) block
diagram shows the control scheme used to compensate for the
vibrational dynamics. The (b) time response shows the tracking per-
formance for several frequencies (10, 50, 100, and 150 Hz), where
the units of the horizontal axis are normalized periods of the output
signal. At each frequency, the measured responses are within 2%
of each other.
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for tracking a sinusoidal signal xd(t) = A sin (2π f t) with
A = 30 μm and f = 10, 50, 100, 150 Hz. Because the
dynamics are compensated for by using the inversion
approach, the remaining distortions are caused by hys-
teresis. The maximum difference between the output for
the four cases is less than 2% of the ±30-μm range. The
small error between the four frequencies suggests that the
hysteresis effect is rate independent within the frequency
range studied in the experiment.

Current Efforts in Inversion-Based 
Iterative Feedforward Control
One of the main challenges in implementing inversion-
based feedforward control is the fact that a reasonably
accurate system model is needed, or, alternatively, the
model uncertainties and variations must be small. These
issues can be addressed by two approaches. When the
desired trajectory is known beforehand, one approach is to
use inversion-based iterative control (IIC) [40]–[42]. An
alternative approach is to use the robust inversion feedfor-
ward control method for tracking the desired trajectories
online with finite preview [43], [44]. 

IIC introduces an iteration mechanism to find the feed-
forward input. The basic idea is to minimize the adverse
effect of modeling errors or dynamics uncertainties by
iteratively correcting the input from one trial to the next.
Unlike conventional iterative learning control [45], IIC
explicitly exploits the inverse model of the system dynam-
ics. This approach is demonstrated in [40] and [46] for
scanning and force-curve measurement in AFM applica-
tions. Also, the method can be used to deal with cross-
coupling effects such as when the input in the x-axis
excites the vertical motion of the piezoactuator in the z-
direction at high frequency [41].

Finally, recent advances in iteration-based feedforward
control for SPM include sensorless implementation [47]
and iteration for hysteresis compensation [22]. For exam-
ple, in nanoresolution SPM imaging using a scanning tun-
neling microscope, where a sensor for measuring the
movement of the piezoactuator is not available, an image-
based iterative control method is developed to account for
dynamic effects [47]. The acquired images are used to
extract the tracking error, and the estimated error is subse-
quently used to iteratively determine the inverse input.
Also, an iteration method is developed to account for the
hysteresis effect in [22] and for both hysteresis and
dynamic effects in [40]. One of the main challenges with
iterative methods for hysteresis compensation is showing
convergence. The difficulty arises because of the multival-
ued nature of hysteresis, where multiple outputs exist for
a given input value and vice versa. Therefore, the direc-
tion in which the input needs to be changed to reduce the
output error cannot be uniquely determined. However, a
method is discussed in [22] for convergence with guaran-
teed convergence rates.

CONCLUSIONS
This article describes an inversion-based feedforward
approach to compensate for dynamic and hysteresis effects in
piezoactuators with application to AFM technology. To handle
the coupled behavior of dynamics and hysteresis, a cascade
model is presented to enable the application of inversion-based
feedforward control. The dynamics, which include vibration
and creep, are modeled using linear transfer functions. A fre-
quency-based method is used to invert the linear model to find
an input that compensates for vibration and creep. The inverse
is noncausal for nonminimum-phase systems. Similarly, the
hysteresis is handled by an inverse-Preisach model. To avoid
the complexity of finding the inverse-Preisach model, high-
gain feedback control can be used to linearize the system’s
behavior. A feedforward input is then combined with the feed-
back system to compensate for the linear dynamics to achieve
high-speed AFM imaging. Finally, recent efforts in feedfor-
ward control for an SPM application including the use of itera-
tion to handle hysteresis as well as uncertainties and variations
in the system model is discussed.
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