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Abstract
Engineered Ionic Polymer Metal Composites (eIPMCs) represent the next generation of IPMCs,
soft electro-chemo-mechanically coupled smart materials used as actuators and sensors. Recent
studies indicate that eIPMC sensors, featuring unique microstructures at the interface between
the ionic polymer membrane and the electrode, exhibit enhanced electrochemical behavior and
sensitivity under compression, as compared to traditional IPMCs. However, a complete and
experimentally-validated model of how eIPMCs behave under dynamic compression loads is
currently missing. In this paper, we develop an analytical model for eIPMC sensors, elucidating
the role of the engineered interface, modeled as a separate material layer with unique
mechanical and electrochemical properties. Theoretical predictions focus on the
mechanical-to-electrochemical transduction response under dynamic compressive loads.
Experimental verification is conducted on conventional IPMC and novel eIPMC samples
fabricated using the polymer abrading technique. Electrochemical impedance spectroscopy is
performed to study the effect of the engineered interface on the electrochemical properties.
Open-circuit (OC) voltage and short-circuit (SC) current are measured under external
compressive loads in different loading scenarios to demonstrate sensing performance. Results
show good qualitative agreement between experimental trends and model predictions.
Experiments over the frequency range 1–18Hz demonstrate an increase of 220%–290% in
open-circuit voltage and 17%–166% in SC current sensitivity for eIPMCs over IPMCs.

Keywords: Ionic polymer metal composites, Soft actuator and sensor, Physics-based model,
Electrochemical impedance spectroscopy

1. Introduction

There is a critical demand for soft sensors in different
applications across various fields such as soft robotics [1],

∗
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bioengineering [2], rehabilitation [3], medical devices [4],
and human-machine integrated systems [5]. Despite recent
advances demonstrated by several classes of widespread
sensors such as resistive [6], capacitive [7], piezoelectric [8],
and optical fiber [9], existing technologies have disadvant-
ages such as high actuation pressure, non-linearity (due to
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output inversely proportional to the gap between the parallel
electrodes), low flexibility, and post-processing difficulty,
respectively. Hence, there is a need for developing new types
of soft sensors with improved capabilities.

Ionic polymer-metal composites (IPMCs) are a class of
electroactive smart materials fabricated from a thin electric-
ally charged polymer membrane, such as Nafion, plated with
noblemetal electrodes, such as platinum, then neutralized with
a charged solvent [10]. Inherent properties of IPMCs, such
as their flexibility [11], self-sensing capacity [12], and oper-
ation in both air and water environments [13], make them
an ideal candidate in various engineering applications [3,
4]. IPMCs have the ability to operate as both sensors and
actuators [14, 15]; however, most of the research work on
IPMCs has focused on their actuation mode. Among the stud-
ies of the sensor mode, the majority have focused on bend-
ing mode sensing [16–18], with fewer studies concentrating
on the feasibility of IPMCs sensors as force and displacement
sensors [19–22] or energy harvesting systems [23–27]. The
common challenges of low sensitivity, poor property control,
and non-versatile operation of IPMCs sensors, have limited
their use in applications outside of the typical bending-mode
configuration [28], and only a few studies investigate IPMC
sensors under compression [29–34] and shear sensing [35, 36].
In particular, IPMCs show high variability in their electro-
chemical properties, including capacitance [37].

To understand the fundamental behavior of IPMCs under
compression loading conditions and overcome some of the
fundamental limitations in terms of sensing, our group has
developed engineered IPMCs (eIPMCs) [28, 38]. In the
eIPMCs, one polymer-electrode interface in the material is
purposefully modified to enhance inhomogeneous (and, pos-
sibly, anisotropic) strain fields upon compression. In [38],
the interface modification is produced via a novel fabrication
method called the ‘polymer abrading technique’ (PAT). Unlike
additive manufacturing approaches [28], PAT is advantageous
due to its repeatability, simplicity, and cost-effectiveness, as
it does not require specialized 3D printing equipment. In our
recent works [38, 39], we focused on the performances of the
eIPMC sensor fabricated using PAT under static and quasi-
static compression and bending loading conditions. In [28], we
developed a new eIPMC model which captures the process-
structure relationships and illustrates the enhanced sensitivity
of eIPMC sensors. In [39], we presented an updated, simpli-
fied minimal mechano-chemo-electrical model for the eIPMC
sample under both compression and bending. This model
describes mechanical inhomogeneities in a more intuitive way
by assuming a separate composite layer (CL) for the engin-
eered interface. Crucially, while the CL has different mechan-
ical properties than the bulk polymer, the electromechanical
properties are assumed to be the same. While correctly identi-
fying the mechanism for mechano-chemoelectrical transduc-
tion, this model cannot capture important features of the sensor
dynamic response that are observed experimentally.

In this paper, we aim to address three specific knowledge
gaps identified in previous work. First, we introduce a novel
analytical model that correctly includes both the mechanical
and electrochemical properties of the CL in eIPMC. Themodel

is attacked analytically, and allows us to understand the phys-
ics of the sensor response under both static and dynamic com-
pressive loads. Finally, the model enables a complete char-
acterization of sensing modes beyond the open-circuit (OC)
voltage sensing. Our novel model is verified experimentally,
with results showing agreement between our analytical pre-
dictions and experimental findings.

The key contributions and novelties of this article include:
(1) a novel physics-based model that explores the sensing
behavior of eIPMCs under dynamic compressive loads. The
engineered interface of the eIPMC is modeled as a separate
layer with unique mechanical and electrochemical properties.
We note that an asymmetric CL with unique mechanical and
electrochemical properties, which is a natural description of
an engineered interface, was never considered in the literature;
(2) experimental measurement of OC voltage performance of
eIPMCs under dynamic compressive loads, demonstrating the
agreement between experimental observations and theoretical
results; and (3) an evaluation of the short-circuit (SC) current
performance of eIPMCs under dynamic compressive loads,
and its favorable comparison with our modeling results. Note
that the SC current response, while predicted theoretically,
was never experimentally studied in the context of eIPMCs.

The remainder of the paper is organized as follows.
Section 2 presents the new physics-based model of the
mechano-chemo-electrical behavior of the eIPMC under
dynamic external compressive loads. Section 3 reports on the
fabrication and electrochemical characterization of our novel
eIPMC sensors. Section 4 details the OC voltage and SC cur-
rent sensing performance measurement, where the response to
single sine, step, and chirp load is evaluated and interpreted, in
light of the modeling results. Section 5 presents a discussion
of the findings of this work. Concluding remarks are presented
in section 6.

2. Modeling and governing equations

2.1. Problem statement and nomenclature

This section focuses on the chemoelectromechanical transduc-
tion via a one-dimensional through-the-thickness (TTT) prob-
lem described by the spatial coordinate, denoted here as x. The
schematic representation and nomenclature of the problem are
depicted in figure 1, where figure 1(a) shows a TTT schemat-
ics of the eIPMCwith idealized engineeredmicro-features and
figure 1(b) presents a model based on homogenization of the
engineered interface, see also [40]. In this model, the engin-
eered interface between the polymer and the metal regions is
modeled with a CL. Because of the homogenization approach,
we will consistently neglect the specific description of elec-
trode surface roughness [37, 41]. As sketched in figure 1(b),
the thickness of the bulk region is assumed to be 2h, the CL
is between −d⩽ x⩽ 0, the grounded (fixed) electrode is at
x=−d. The grounded electrode is at zero electric potential,
that is, V = 0. A time-varying compressive load p(t) is applied
to the upper (movable) electrode at x= 2h, and the output
voltage V is measured from this electrode.
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Figure 1. Schematic representation (not to scale) and nomenclature
of eIPMC, with (a) detail of the idealized engineered interface
region, and (b) the homogenization as CL region. Here, V is the
electric potential at the movable electrode, p is the exerted pressure,
h is the semi-thickness of the bulk polymer membrane, d is the
thickness of the CL, and x is the through-the-thickness coordinate.

Throughout this work, we focus on the relatively low-
frequency behavior of the eIPMC sensor. In particular, we
systematically neglect dynamic effects on the mechanics time
scale (which is assumed to respond much slower than the
chemoelectrical time scale). Furthermore, we neglect high
frequency behavior in the chemoelectrical response, similar
to previous approaches discussed in the literature, see for
example [28, 39].

2.2. Simplified mechanical model

A simplified model for the mechanical behavior of eIPMCs
under compression was proposed in [28] and further refined
in [39]. Within this approach, the composite was modeled as
a sandwich material comprised of two rigid layers (movable
and fixed electrodes) and two isotropic and homogeneous lay-
ers (bulk polymer and interfacial layers) with different mech-
anical properties, for example see also figure 1(b). In par-
ticular, the Young’s modulus of the CL is expressed via the
‘inverse rule of mixtures’, under the assumption of uniform
stress in the CL. We indicate the Young’s modulus of the poly-
mer, metal, and CL by Ep, Em, and Ecl, respectively. Thus,
Ecl = [ϕ/Ep+(1−ϕ)/Em]−1, where ϕ is the volume fraction
of the polymer (volume of polymer per unit volume of the
interface) and can be potentially estimated by the interfacial
topography, for example see [39]. Specifically, for the ideal-
ized interface schematically depicted in figure 1(a), we would
have ϕ= 0.5. Because Em ≫ Ep, the estimate of Ecl can be
approximated with Ecl ≈ Ep/ϕ. As explained later, however,
the explicit values of ϕ and dwhich would be difficult to meas-
ure experimentally are not needed in the final version of the
model. At any rate, it is possible to indirectly estimate these
quantities from electrochemical tests as discussed in [39].

According to the previous development, under the applica-
tion of an external compressive load, a uniaxial state of stress
develops in the TTT direction. Assuming plane strain con-
ditions and uniform stresses at each x location, the strain in

the TTT direction in the bulk polymer region (superscript
p) is ϵpx =−p(t)/Ep, whereas the strain in the CL region
(superscript cl) is ϵclx =−p(t)/Ecl. Because of the homogen-
ization approach, we assume null strain in the in-plane dir-
ection ϵy = 0 throughout the material and we neglect stress
concentrations. This hypothesis is a simplification of the com-
plicated nature of the TTT stress and strain profiles as dis-
cussed in [28]. In response to compression, the material under-
goes volumetric changes described by the dilatation (trace of
the strain tensor) that, in the bulk polymer and in the CL
regions, can be expressed as ∆= ϵpx =−p(t)/Ep, and ∆cl =
ϵclx =−p(t)/Ecl ≈−ϕp(t)/Ep, respectively. This implies that
∆cl ≈ ϕ∆. Importantly, the mechanical asymmetry between
the properties of the bulk polymer and the CL result in inhomo-
geneous strain in the TTT direction which is responsible
for mechanical to electrochemical transduction. Results of
this minimal mechanical modeling approach will be used in
the next section to couple the electrochemical description of
eIPMCs to the external mechanical excitation.

2.3. Linear chemoelectromechanical sensing model

Herein, we present the model for mechanical to electrochem-
ical transduction by postulating linear response for the eIPMC
as a compression sensor, assuming small deformations, elec-
tric potentials, and deviations of the counterion concentra-
tion from the concentration at rest. Compared to our previous
work [39] where the bulk and the CL regions differed only
by their mechanical properties, here we extend the analysis
to also include electrochemical property differences between
these regions. Throughout this work, the polymer and the CL
are assumed to be electrochemically homogeneous and iso-
tropic, and it is assumed that the eIPMC electrodes are per-
fectly conductive.

The nonlinear governing equations for the mechano-
chemo-electrical sensing behavior of IPMC have been previ-
ously formulated in [17, 30, 42]. The linearized version of the
Equations for the bulk region are provided by [39]. The linear-
ized equations for the eIPMC bulk region are

−ε∂
2ψ (x, t)
∂x2

= F {c(x, t)− c0 [1−∆(x, t)]} ,

(1a)

∂

∂t
[c(x, t)+ c0∆(x, t)] =D

[
∂2c(x, t)
∂x2

+
Fc0
RT

∂2ψ (x, t)
∂x2

]
.

(1b)

Equation (1a) defines Poisson’s equation, establishing the
correlation between the electric potential ψ and the free
charge in the eIPMC based on Gauss’ law. Here, F rep-
resents Faraday’s constant, c is the concentration of mobile
counterions, c0 is the concentration of fixed ions, and ε is
the bulk polymer permittivity, assumed to be constant. We
emphasize that the concentrations of mobile counterions and
fixed ions are computed with respect to the deformed volume
of the eIPMC. Other approaches are also possible, see for
example [16]. Equation (1b) represents the linearized gen-
eralized Nernst–Planck equation, ensuring the conservation
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of charge in the eIPMC. Here, D is the counterion diffus-
ivity in the bulk polymer, R is the universal gas constant,
and T denotes the IPMC temperature. The right-hand side
of equation (1b) can be interpreted as the negative diver-
gence of the linearized ion flux J, expressed as J(x, t) =
−D[∂c(x, t)/∂x+(Fc0)/(RT )∂ψ(x, t)/∂x]. Similarly, the
left-hand side of equation (1a) can be interpreted as the diver-
gence of the electric displacement D(x, t) =−ε∂ψ(x, t)/∂x.

Using similar linear assumptions as in the bulk region, the
governing equations for the sensing behavior in the CL are
expressed as

− εcl
∂2ψcl (x, t)

∂x2
= F {ccl (x, t)− c0ϕ [1−∆cl (x, t)]} , (2a)

∂

∂t
[ccl (x, t)+ c0ϕ∆cl (x, t)]

=Dcl

[
∂2ccl (x, t)
∂x2

+
Fc0ϕ
RT

∂2ψcl (x, t)
∂x2

]
,

(2b)

where the subscript cl indicates quantities pertaining to
the CL. It should be noticed that in the CL the concen-
tration of fixed ions is given by c0ϕ due to the presence
of the metal phase, see also [40]. Additionally, the ion
flux and the electric displacement in the CL are Jcl(x, t) =
−Dcl[∂ccl(x, t)/∂x+((Fc0ϕ)/(RT ))∂ψcl(x, t)/∂x] and
Dcl(x, t) =−εcl∂ψcl(x, t)/∂x, respectively.

The governing equations above must be supplemented
with initial, boundary, and continuity conditions. For ease of
presentation, these will be discussed below in their nondimen-
sional form.

2.4. Nondimensionalization

It is convenient to nondimensionalize the governing
equations for both the bulk region and CL. For the bulk
region, we introduce the following nondimensional vari-
ables, indicated by superimposed tilde: nondimensional
length x̃= x/h and time t̃= t/t0, pressure p̃(̃t) = p(t0̃t)/Ep,
voltage ψ̃(x̃, t̃) = ψ(hx̃, t0̃t)/Vth, net counterion concentra-
tion χ̃(x̃, t̃) = (c(hx̃, t0̃t)− c0)/c0, and ion flux J̃(x̃, t̃) =
−(Dc0/h)(∂[χ̃(x̃, t̃)+ ψ̃(x̃, t̃)]/∂x̃). The parameters t0 is
a characteristic time that will be defined later. Similarly,
Vth =RT /F is a characteristic voltage known as the thermal
voltage, approximately equal to 25mV at room temperature.
Thus, the nondimensional form of equations (1a) and (1b) is
expressed as

−δ2 ∂
2ψ̃ (x̃, t̃)
∂x̃2

= χ̃(x̃, t̃)− p̃ (̃t) , (3a)

∂

∂ t̃
[χ̃(x̃, t̃)− p̃ (̃t)] = δ

[
∂2χ̃(x̃, t̃)
∂x̃2

+
∂2ψ̃ (x̃, t̃)
∂x̃2

]
. (3b)

Here, the parameter δ = λD/h is the ratio between the
Debye screening length λD =

√
(εRT )/(F2c0) and the poly-

mer semithickness h. The characteristic time t0 = (λDh)/D is
chosen as the diffusion timescale within the charge boundary

layers. Selecting this timescale allows for a convenient separ-
ation of the evolution of mechanical and electrochemical phe-
nomena, see [41].

The CL is significantly thinner than the bulk region, neces-
sitating magnification. Simultaneously conducting magni-
fication and nondimensionalization, we introduce a new
spatial coordinate xcl for the CL, with the nondimensional
form x̃cl =−x/(h

√
δ). Nondimensional variables in the CL

are: ψ̃cl(x̃cl, t̃) = ψcl(hx̃cl, t0̃t)/Vth, χ̃cl(x̃cl, t̃) = (ccl(hx̃cl, t0̃t)−
c0ϕ)/c0ϕ, J̃cl(x̃cl, t̃) = (Dclc0ϕ/h

√
δ)(∂[χ̃cl(x̃cl, t̃)+

ψ̃cl(x̃cl, t̃)])/∂x̃cl, and ∆̃cl(̃t) =−ap̃(̃t), where a= [ϕ +(1−
ϕ)Ep/Em] encodes information on the mechanical asymmetry
of the CL and the bulk polymer. The nondimensional form of
equations (2a) and (2b) read

− ε⋆
∂2ψ̃cl (x̃cl, t̃)

∂x̃2cl
= χ̃cl (x̃cl, t̃)− ap̃ (̃t) , (4a)

∂

∂ t̃
[χ̃cl (x̃cl, t̃)− ap̃ (̃t)]

=D⋆δ

[
∂2χ̃cl (x̃cl, t̃)

∂x̃2cl
+
∂2ψ̃cl (x̃cl, t̃)

∂x̃2cl

]
.

(4b)

Here, the nondimensional permittivity and diffusivity con-
stants are defined as ε⋆ = εclδ/(εϕ) and D⋆ =Dcl/(Dδ).
Importantly, because εcl ≫ ε andDcl ≪D, see [40], the para-
meters ε⋆ and D⋆ are assumed to be of order O(1), see
also [32].

The governing differential equations are supplemented by
initial, boundary, and continuity conditions. In particular, we
assume that, initially, the polymer and CL are unstressed and
electrically neutral. Thus, we let

p̃ (̃t= 0) = 0, (5a)

ψ̃ (x̃, t̃= 0) = 0, (5b)

ψ̃cl (x̃cl, t̃= 0) = 0, (5c)

χ̃(x̃, t̃= 0) = 0, (5d)

χ̃cl (x̃cl, t̃= 0) = 0. (5e)

Continuity conditions at the bulk polymer-CL interface
involve the continuity of electric potential, ion flux, electric
displacement, and counterion concentration. These conditions
are expressed as

ψ̃ (x̃= 0, t̃) = ψ̃cl (x̃cl = 0, t̃) , (6a)

J̃(x̃= 0, t̃) = J̃cl (x̃cl = 0, t̃) , (6b)

D̃(x̃= 0, t̃) = D̃cl (x̃cl = 0, t̃) , (6c)

χ̃(x̃= 0, t̃) = χ̃cl (x̃cl = 0, t̃) . (6d)

Finally, we assume ion blocking conditions (null flux at the
electrode interfaces), and imposed voltage at the electrodes.
We thus have
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J̃(x̃= 2, t̃) = 0, (7a)

J̃cl (x̃cl = d⋆, t̃) = 0, (7b)

ψ̃ (x̃= 2, t̃) = Ṽ (̃t) , (7c)

ψ̃cl (x̃cl = d⋆, t̃) = 0, (7d)

where we defined with d⋆ = d/(h
√
δ) the nondimensionalized

location of the fixed grounded electrode. Note that the voltage
Ṽ(̃t) is the sensor voltage output measured at the movable elec-
trode, located at the nondimensional distance x̃= 2.

It is important to observe that, in practical applications,
λD ≈ 10−10m, rendering the parameter δ of the order of
10−6, see [43]. Consequently, a small parameter multiplies
the highest order derivative terms and equations (3a), (3b),
(4a) and (4b) describe a singularly perturbed system, amen-
able to solution through the matched asymptotic expansions
method [44]. It is known that, mathematically, this describes
the development of a boundary layer solution, reflected phys-
ically in a charge boundary layer distribution, see also [43].
Throughout the remaining derivations, the superscript tilde
will be omitted for notational convenience.

2.5. Matched asymptotic expansions

The problem is solved using the matched asymptotic expan-
sions method which is a powerful tool for solving boundary
value problems with boundary layer-type behaviors. This sub-
section outlines the solution procedure of this method, fol-
lowing in part [30, 43]. Figure 2 illustrates the general idea
and relevant nomenclature, showing two outer expansions and
four inner expansions. In the polymer region, we use one inner
expansion at the polymer-top electrode interface, an outer
expansion for the bulk region, and another inner expansion
at the polymer-CL interface. This solution follows closely the
one presented in [28]. Conversely, for the CL, we use one inner
expansion at the CL-polymer interface, an outer expansion for
the CL, and another inner expansion at the CL-grounded elec-
trode interface. This solution is a novel contribution of this
work.

2.5.1. Outer expansion for the polymer region. In the
eIPMC polymer region, we consider a regular asymptotic
expansion of χ and ψ in terms of the small parameter δ, such
that χ(B)(x, t) = χ

(B)
0 (x, t)+ δχ

(B)
1 (x, t)+ δ2χ

(B)
2 (x, t)+ . . .

and ψ(B)(x, t) = ψ
(B)
0 (x, t)+ δψ

(B)
1 (x, t)+ δ2ψ

(B)
2 (x, t)+ . . .,

where the symbol (B) indicates the outer expansion in the bulk
region. Substituting these representations in equations (3a)
and (3b), and approximating the outer solution with its lead-
ing order term of O(δ0), we obtain

χ(B) (x, t)≈ χ
(B)
0 (x, t) = p(t) , (8a)

ψ(B) (x, t)≈ ψ
(B)
0 (x, t) =−p(t)+A(B)

1 (t)x+A(B)
0 (t) , (8b)

whereA(B)
1 (t) andA(B)

0 (t) are unknown integration parameters,
functions of time.

2.5.2. Inner expansions in the polymer. In the vicinity of
polymer-CL interface at x= 0 and the interface between the
polymer and the top (movable) electrode at x= 2, we mag-
nify the spatial coordinate by introducing the stretched vari-
ables ξf = x/δ and ξe = (2− x)/δ, respectively. We perform
the change of variables in equations (3a) and (3b) and use a
regular asymptotic expansion of χ and ψ in the boundary layer
region near the polymer-CL interface in terms of the small
parameter δ, such that χ(F)(ξf, t) = χ

(F)
0 (ξf, t)+ δχ

(F)
1 (ξf, t)+

δ2χ
(F)
2 (ξf, t)+ . . . and ψ(F)(ξf, t) = ψ

(F)
0 (ξf, t)+ δψ

(F)
1 (ξf, t)+

δ2ψ
(F)
2 (ξf, t)+ . . ., where the symbol (F) indicates the inner

expansion in the boundary layer at the bottom of the polymer
(region (F)). Retaining only the leading order, we obtain

−
∂2ψ

(F)
0 (ξf, t)

∂ξ2f
= χ

(F)
0 (ξf, t)− p(t) , (9a)

∂2

∂ξ2f

[
χ
(F)
0 (ξf, t)+ψ

(F)
0 (ξf, t)

]
= 0. (9b)

Notably, the scaling removes the explicit time derivatives
from the leading order of equation (3b), which thus reduces
to an ordinary differential equation in the spatial variable.
By approximating χ(F)(ξf, t) and ψ(F)(ξf, t) with their O(δ0)
terms, we obtain

χ(F) (ξf, t)≈ χ
(F)
0 (ξf, t) = p(t)+A(F)

1 (t)e−ξf , (10a)

ψ(F) (ξf, t)≈ ψ
(F)
0 (ξf, t) =−p(t)−A(F)

1 (t)e−ξf +A(F)
3 (t) .

(10b)

Similarly, for the top part of the polymer (region (E)), we
have

χ(E) (ξe, t)≈ χ
(E)
0 (ξe, t) = p(t)+A(E)

1 (t)e−ξe , (11a)

ψ(E) (ξe, t)≈ ψ
(E)
0 (ξe, t) =−p(t)−A(E)

1 (t)e−ξe +A(E)
3 (t) ,

(11b)

where A(F)
1 (t), A(F)

3 (t), A(E)
1 (t), and A(E)

3 (t) are unknown integ-
ration parameters, functions of time. In the derivation of
equations (10a), (10b), (11a), and (11b) we have also used
the fact that these solutions must be bounded at ξf →∞ and
ξe →∞.

2.5.3. Outer expansion for the CL region. In the eIPMC
CL, we consider a regular asymptotic expansion of χ
and ψ in terms of the small parameter

√
δ, such that

χ(C)(xcl, t) = χ
(C)
0 (xcl, t)+

√
δχ

(C)
1 (xcl, t)+ δχ

(C)
2 (xcl, t)+

. . . and ψ(C)(xcl, t) = ψ
(C)
0 (xcl, t)+

√
δψ

(C)
1 (xcl, t)+

δψ
(C)
2 (xcl, t)+ . . ., where the symbol (C) indicates the outer

expansion in the CL. Substituting these representations in
equations (4a) and (4b) and using the initial condition of
equation (5e) and by approximating the outer solution with its
leading order term, we obtain
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Figure 2. Schematic depiction of matched asymptotic expansions strategy with labels for six expansion zones.

χ(C) (xcl, t)≈ χ
(C)
0 (xcl, t) = ap(t) , (12a)

ψ(C) (xcl, t)≈ ψ
(C)
0 (xcl, t) = C(C)

1 (t)xcl+C(C)
0 (t) , (12b)

where C(C)
1 (t) and C(C)

0 (t) are unknown integration paramet-
ers, functions of time.

2.5.4. Inner expansions in the CL. In the vicinity of
polymer-CL interface at xcl = 0 and CL-electrode inter-
face at xcl = d⋆, we magnify the spatial coordinate by
introducing the stretched variables ηl = xcl/

√
δ and ηg =

(d⋆ − xcl)/
√
δ, respectively. We perform the change of vari-

ables in equations (4a) and (4b) and use a regular asymp-
totic expansion of χ and ψ in the boundary layer region
in terms of the small parameter

√
δ, such that χ(L)(ηl, t) =

χ
(L)
0 (ηl, t)+

√
δχ

(L)
1 (ηl, t)+ δχ

(L)
2 (ηl, t)+ . . . andψ(L)(ηl, t) =

ψ
(L)
0 (ηl, t)+

√
δψ

(L)
1 (ηl, t)+ δψ

(L)
2 (ηl, t)+ . . ., where the sym-

bol (L) indicates the inner expansion in the boundary layer at
the top of the CL. Thus, at the leading order, equations (4a)
and (4b) reduce to

∂2ψ
(L)
0 (ηl, t)

∂η2l
= 0, (13a)

∂

∂t

[
χ
(L)
0 (ηl, t)− ap(t)

]
=D⋆ ∂

2χ
(L)
0 (ηl, t)

∂η2l
. (13b)

By approximatingψ(L)(ξl, t)with itsO(δ0) term, we obtain
from equation (13a)

ψ(L) (ξl, t) = ψ
(L)
0 (ξl, t) = C(L)

0 (t) . (14)

Similarly, in the vicinity of CL-electrode interface, the gov-
erning equations reduce to

∂2ψ
(G)
0 (ηg, t)

∂η2g
= 0, (15a)

∂

∂t

[
χ
(G)
0 (ηg, t)− ap(t)

]
=D⋆ ∂

2χ
(G)
0 (ηg, t)

∂η2g
. (15b)

Note that, differently to what observed in the inner expan-
sions in the polymer, the scaling in the CL region does
not eliminate the time derivatives in the generalized Nernst–
Planck equations. A physical interpretation of the differ-
ent behavior can be sought in the limited diffusion in the
CL, where the ion concentration cannot track the volumetric
changes ‘instantaneously’ (at the leading order).

By approximatingψ(G) with itsO(δ0) term, we obtain from
equation (15a)

ψ(G) (ηg, t) = ψ
(G)
0 (ηg, t) = C(G)

0 (t) . (16)

In equations (14) and (16), C(L)
0 (t) and C(G)

0 (t) are unknown
integration parameters, functions of time. In addition, in the
derivation of these equations, we have also used the fact that
the solutions must be bounded at ηl →∞ and ηg →∞.

To solve for χ(L)
0 (ηl, t) and χ

(G)
0 (ηg, t), we apply the

Laplace transform on equations (13b) and (15b) and indic-
ate transformed variable with a superimposed hat. The
transformation reduces the partial differential equations
to ordinary differential equations in the independent spa-
tial variable. The solution at the leading order can be eas-
ily determined, in the Laplace domain, as χ̂(L)(ηl,s)≈
χ̂
(L)
0 (ηl,s) = ap̂(s)+ Ĉ(L)

3 (s)e−ηl
√
s/D⋆

and χ̂(G)(ηg,s)≈
χ̂
(G)
0 (ηg,s) = ap̂(s)+ Ĉ(G)

3 (s)e−ηg
√
s/D⋆

with s the complex
Laplace (nondimensional) variable. These solutions indicate
a diffusion-dominated dynamics for the ion concentration.
Similar behaviors were observed in [32], where a solution
based on heat kernels was developed for a related problem.

Here, Ĉ(L)
3 (s) and Ĉ(G)

3 (s) are unknown integration func-
tions of time that have been transformed in the Laplace
domain. To determine these functions, along with the other
unknown functions of time of the previous developments, we
first take the Laplace-transform of equations (8a), (8b), (10a),
(10b), (11a), (11b), (12a), (12b), (14) and (16). Then, we
determine the unknown functions by imposing the match-
ing conditions. In the following, all functions are assumed
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to be transformed into the Laplace domain (unless other-
wise specified) and the superimposed hat will be dropped for
simplicity.

2.5.5. Matching. The inner and outer expansions determ-
ined above must be matched in such a way they share a com-
mon limit in their overlap regions. The matching conditions
consist of the following limit conditions

lim
x→2

ψ(B) (x,s) = lim
ξe→∞

ψ(E) (ξe,s) , (17a)

lim
x→2

χ(B) (x,s) = lim
ξe→∞

χ(E) (ξe,s) , (17b)

lim
x→0

ψ(B) (x,s) = lim
ξf→∞

ψ(F) (ξf,s) , (17c)

lim
x→0

χ(B) (x,s) = lim
ξf→∞

χ(F) (ξf,s) , (17d)

lim
xcl→0

ψ(C) (xcl,s) = lim
ηl→∞

ψ(L) (ηl,s) , (17e)

lim
xcl→0

χ(C) (xcl,s) = lim
ηl→∞

χ(L) (ηl,s) , (17f )

lim
xcl→d⋆

ψ(C) (xcl,s) = lim
ηg→∞

ψ(G) (ηg,s) , (17g)

lim
xcl→d⋆

χ(C) (xcl,s) = lim
ηg→∞

χ(G) (ηg,s) . (17h)

Substituting in the proper leading-order solutions, we
obtain,

2A(B)
1 (s)+A(B)

0 (s) = A(E)
3 (s) , (18a)

A(B)
0 (s) = A(F)

3 (s) , (18b)

C(C)
0 (s) = C(L)

0 (s) , (18c)

C(C)
1 (s)d⋆ +C(C)

0 (s) = C(G)
0 (s) . (18d)

The next matching condition pertains to enforcing the
voltage boundary conditions given by equations (7c) and (7d).
Thus,

ψ(G) (ηg = 0,s) = C(G)
0 (s) = 0, (19a)

ψ(E) (ξe = 0,s) =−p(s)−A(E)
1 (s)+A(E)

3 (s) = V(s) .
(19b)

The electric potential and charge concentration continuity
conditions yield

p(s)+A(F)
1 (s) = ap(s)+C(L)

3 , (20a)

−p(s)−A(F)
1 (s)+A(F)

3 (s) = C(L)
0 (s) . (20b)

The other matching condition is the continuity of the ion
flux at the polymer-CL interface and can be enforced by adapt-
ing the procedure in [32, 43]. For this, we temporarily revert
to the time domain description. By integrating (3b) from the
polymer-CL interface to an arbitrary location in the polymer
region we have

∂

∂t

ˆ x

0
[χ(x ′, t)− p(t)] dx ′

= δ
∂

∂x
[χ(x, t)+ψ(x, t)]

− δ
∂

∂x
[(χ(x= 0, t)+ψ(x= 0, t)] . (21)

where x ′ is a dummy integration variable.The right hand side
of equation (21) is the difference of the flux at x and at x= 0,
obtained by directly integrating its divergence. After mov-
ing the second term in the right-hand side of equation (21)
to the left-hand side, we assign the new left-hand side of
equation (21) to the inner solution and the right-hand side of
equation (21) to the outer solution. Thus,

∂

∂t

ˆ ∞

0

[
χ(F)(ξ ′f , t)− p(t)

]
dξ ′f

+
1
δ

∂

∂ξf

[
(χ(F)(ξf = 0, t)+ψ(F)(ξf = 0, t)

]
= lim

x→0

∂

∂x

[
(χ(B)(x, t)+ψ(B)(x, t)

]
. (22)

where ξ ′f is a dummy variable. The right-hand side of this
expression is calculated from equations (8a) and (8b). Vice
versa, the first term on the left-hand side is evaluated at the
leading order by using equations (9a) and (10b) as

∂

∂t

ˆ ∞

0

[
χ(F)

(
ξ ′f , t

)
− p(t)

]
dξ ′f

=− ∂

∂t

ˆ ∞

0

∂2ψ(F)
(
ξ ′f , t

)
∂2ξ ′f

dξ ′f


=− ∂

∂t

[
∂

∂ξf

(
ψ(F) (ξf =∞, t)−ψ(F) (ξf = 0, t)

)]
=
∂

∂t
A(F)
1 (t) . (23)

Then, to evaluate the second term on the left-hand side of
equation (22), we apply the continuity of the ion flux at
the polymer-CL interface as in equation (6b) by substituting
ξf = x/δ and ηl = xcl/

√
δ in the ion-blocking conditions. This

yields

1
δ

∂

∂ξf
[(χ(ξf = 0, t)+ψ(ξf = 0, t)]

=−D⋆ϕ
∂ [χ(ηl = 0, t)+ψ(ηl = 0, t)]

∂ηl
. (24)

The right-hand side of this expression is available from the
solution of equation (13b). Summarizing these developments,
the flux continuity condition in equation (22) can be conveni-
ently expressed in the Laplace domain as

sA(F)
1 (s)+ϕ

√
sD⋆C(L)

3 (s) = A(B)
1 (s) . (25)

We further enforce ion blocking condition at the polymer-
electrode interface and ion flux continuity at the CL-electrode
interfaces, by following the same procedure as above. This

7
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results into two additional flux conditions expressed in the
Laplace domain as

−sA(E)
1 (s) = A(B)

1 (s) , (26)

−C(G)
3 (s)

√
s=

√
δD⋆C(C)

1 (s) . (27)

Next, we enforce the continuity of electric displacement
at the CL-polymer interface as required in equation (6c).
Again, we revert to the time domain for derivations. First, the
charge in the CL near the interface is evaluated by integrating
equation (4a) as

− ε⋆
[
∂ψcl (xcl, t)

∂xcl
− ∂ψcl (0, t)

∂xcl

]
=

ˆ xcl

0
[χcl (x

′
cl, t)− ap(t)] dx ′cl, (28)

where x ′cl is a dummy variable. Next, the second term on the
left-hand side is moved to the right-hand side and the outer
solution in equation (12b) and inner solutions at the top of the
CL are used to evaluate the left- and right-hand sides, respect-
ively. At the leading order, we have

−ε⋆C(C)
1 (t) =

√
δ

ˆ ∞

0

[
χ(L) (η ′

l , t)− ap(t)
]
dη ′

l

− ε⋆√
δ

∂ψ(L) (ηl = 0, t)
∂ηl

. (29)

where η ′
l is a dummy variable. By Laplace-transforming

equation (29) and using for χ(L)(ηl,s) in the first term on the
right-hand side the solution of equation (13b), we obtain

−ε⋆C(C)
1 (s) =

√
δ

ˆ ∞

0
C(L)
3 (s)e−η ′

l

√
s/D⋆

dη ′
l

− ε⋆√
δ

∂ψ(L) (ηl = 0,s)
∂ηl

. (30)

Finally, by substituting in ψ(L)(ηl,s) the Laplace-transformed
solution of equation (13a), and using the definition ε⋆ =
εclδ/(εϕ), we find

−ε⋆C(C)
1 (s) =

√
δD⋆

s
C(L)
3 (s)+

√
δ

ϕ
A(F)
1 (s) . (31)

To summarize, Equations (18a)–(20b), (25)–(27) and (31)
constitute a linear system in the twelve unknown functions
A(B)
0 (s), A(B)

1 (s), A(F)
1 (s), A(F)

3 (s), A(E)
1 (s), A(E)

3 (s), C(C)
0 (s),

C(C)
1 (s), C(L)

0 (s), C(L)
3 (s), C(G)

0 (s), C(G)
3 (s). While the solution

of the problem is, at this point, trivially tackled via computer
aided algebra packages, the complete expressions for most
of the coefficients and the resulting composite fields are too
cumbersome to display. Fortunately, to understand the sensor
behavior of the eIPMC under compression, only a subset of
the solution data is necessary, as explained in the next section.

2.6. Equivalent circuit model for eIPMC compression sensor
behavior

We characterize the eIPMC compression sensor behavior by
extracting an equivalent circuit model from the solution of
the governing equations. To this aim, we calculate the eIPMC
electric current output (per unit nominal surface area). First,
the non-dimensional charge storage at the electrodes (per unit
nominal surface area) is calculated in the time domain from
the jump of the electric displacement field at the interface,
as calculated from the inner solution in region (E), see also
[24, 28],

q(t) =−∂ψ
(E) (ξe, t)
∂ξe

∣∣∣∣
ξe=0

=−A(E)
1 (t) . (32)

Note that the charge scaling is consistent with the definition
of [39]. Defining the non-dimensional current per unit area as
the time rate of change of the stored charge, the current through
the eIPMC in the Laplace domain is given by

I(s) =−sA(E)
1 (s)

=
(ms

√
s)γ p(s)+

(
ms

√
s+ s2

)
V(s)

n(m
√
s+ s)+ 2s(m

√
s+ 1)+m

√
s+ 2s2

, (33)

where we have introduced the following nondimensional para-
meters: transduction gain γ = 1− a= (1−ϕ)[1−Ep/Em]≈
1−ϕ, diffusivity parameter m=

√
D⋆ϕ 2 =

√
Dclϕ 2/(δD),

and permittivity parameter n= dϕ/(hε⋆) = dε/(hδεcl).
This expression establishes the relationship between the

current through the eIPMC, the voltage across its electrodes,
and the external mechanical input. We denote now with G(s)
the coefficient multiplying p(s) and with Y(s) the coefficient
multiplying V(s). The current can thus be expressed as I(s) =
G(s)p(s)+ Y(s)V(s). By solving for V(s) and indicating with
Z(s) = 1/Y(s), we obtain

V(s) = Z(s) I(s)−Z(s)G(s)p(s) , (34)

which shows that the term Z(s) represent a physical imped-
ance (per unit area), and the mechanical input is equivalent to
a voltage generator. To better understand the physical behavior
of the eIPMC dynamic compression sensor, it is illustrative to
isolate the expression of the impedance found above

Z(s) =
2s2 +(2m)s

√
s+(n+ 2)s+(n+ 1)m

√
s

s2 +ms
√
s

= 2+
n+ 1
s

+
1

s+m
√
s
. (35)

It is easy to show that this impedance can be realized via
the series connection of a resistor, a capacitor, and the paral-
lel connection of a capacitor and a Warburg impedance ele-
ment [45], which models resistance to mass transfer. Thus,
equations (34) and (35) describe the dynamics of the equi-
valent circuit displayed in figure 3, where the voltage gen-
erator Vsense = Z(s)G(s)p(s) is controlled by the mechan-
ical input and represents the mechanical to electrochemical

8
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Figure 3. Equivalent circuit model of the eIPMC dynamic
compression sensor. Note that the impedance of the Warburg
element is ZW(s) = 1/(W

√
s), see [40].

transduction. The impedance of the circuit in figure 3 is
calculated as

Z(s) = R+
1
C2s

+
1

C1s+W
√
s

=
(C1C2R)s2 +(C2RW)s

√
s+(C1 +C2)s+W

√
s

(C1C2)s2 +(C2W)s
√
s

.

(36)

By comparing the coefficients of the powers of s, the equival-
ent lumped circuit elements can be related to the parameters
in equation (35). Specifically, because equation (35) is nondi-
mensional, we find nondimensional values for the lumped cir-
cuit element as

C1 = 1, (37a)

C2 =
1

1+ n
, (37b)

W= m, (37c)

R= 2. (37d)

Additionally, using equation (33), we can determine the
expressions for nondimensional open circuit voltage VOC or
short circuit current ISC by setting I(s) or V(s) equal to zero,
respectively, in equation (34). These read

VOC =−Vsense

=−Z(s)G(s)p(s) =−mγ p(s)
m+

√
s
,

(38a)

ISC = G(s)p(s)

=
(ms

√
s)γ p(s)

2s2 +(2m)s
√
s+(n+ 2)s+(n+ 1)m

√
s
.

(38b)

Figure 4 qualitatively depicts the nondimensional results
of this modeling section. Panels (a) and (b) display the mag-
nitude and phase of the eIPMC equivalent impedance of the
circuit plotted using equation (35). Panels (c) and (d) display
the magnitude and phase of the eIPMC OC voltage and SC
current sensitivities plotted using equations (38a) and (38b).
Finally, panels (e) and (f) display the OC voltage and SC cur-
rent responses to a step input compression force, plotted using
the inverse Laplace transform of equations (38a) and (38b)
when p(s) = p0/s. To illustrate the qualitative behavior of the
system, in plotting these figures we have assumed m= 1 and

n= 0.1, which are consistent with our assumptions ε⋆ =O(1)
and D⋆ =O(1).

The effect of the parameters m and n on the eIPMC imped-
ance can be understood from equation (35). The parameter m
corresponds to theWarburg parameterW, related to the imped-
ance of the Warburg element as ZW = 1/(W

√
s). For vanish-

ingly small values of m, the Warburg impedance becomes an
open circuit. Thus, the equivalent circuit reduces to an RC
circuit comprising the series connection of resistance R and
a combined capacitance C1C2/(C1 +C2). On the other hand,
as m tends towards infinity, the Warburg impedance becomes
a short-circuit, thus bypassing C1. In this case, the circuit
reduces to an RC circuit comprising the series connection of
resistance R and capacitance C2. On the other hand, the para-
meter n only controls the value of the capacitance C2. In par-
ticular, when n≫ 1, C2 approaches an open circuit, while for
n≫ 1, C2 reduces to the nondimensional value 1. The imped-
ance of our model has a typical low pass behavior dominated
by C2, as seen in figure 4(a). For the particular present choice
of parameters, a characteristic slope of −20dB/dec can be
observed at low frequency, while at higher frequencies, the
circuit effectively simplifies to a resistance R. The effects of
the Warburg impedance can be seen in a narrow band in the
neighborhood of ω/ω0 = 1 for selected values of the m, and n
parameter, manifesting themselves with a segment with slope
close to −10dB/dec.

In figure 4(c), the OC voltage sensitivity displays a charac-
teristic low pass behavior, maintaining an approximately con-
stant value until reaching the cutoff frequency ω/ω0. As the
frequency increases, the OC voltage sensitivity drops with a
slope of −10dB/dec. In figure 4(d), the SC current sensit-
ivity demonstrates a high pass behavior at low frequencies
with a slope of 20dB/dec. Above the cutoff frequency, the
SC current sensitivity displays a −10dB/dec slope as the
frequency increases. For both voltage and current sensing,
Warburg impedance-like effect seems to dominate the beha-
vior above the cutoff frequency. This is a novel result which
was not observed before in compression sensing of eIPMCs.
Indeed, in our previous work, the modeling efforts were only
able to identify the behavior below ω/ω0 ≪ 1.

To better understand the dynamic implications of our
model, panels (e) and (f) depict the predicted time-domain
response of the OC voltage and SC current of the eIPMC
sensor to a step compressive force. These responses are
obtained by numerically calculating the inverse Laplace trans-
form of equations (38a) and (38b) where p(s) = p0/s, that is,
the transform of the unit step input. Observing both responses,
it is apparent that over time, the response exhibits dynamics,
with the SC current exhibiting a notably faster response com-
pared to the OC voltage. Upon application of a step compres-
sion force, the OC voltage response gradually increases, even-
tually reaching its maximum value of 1 as t→∞. Initially,
this increase is rapid (scaling as a diffusion-dominated

√
t time

law) but its rate gradually slows down over time. Conversely,
in the case of the SC current response, a peak value is rap-
idly achieved, followed by decay to its final value of 0 at
t→∞. Note that the decay rate decreases over time, so
neither response follows a traditional exponential behavior.
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Figure 4. Nondimensional results of the modeling section: (a) Magnitude of the eIPMC equivalent impedance. (b) Phase of the eIPMC
equivalent impedance. (c) Magnitude and phase of the eIPMC voltage sensitivity. (d) Magnitude and phase of the eIPMC current sensitivity.
(e) Time domain OC voltage response to step input compression force. (f) Time domain SC current response of the eIPMC sample to step
input compression force.

The predicted transient rising behavior of open circuit voltage
and short circuit current in response to a constant input are in
stark contradiction to the predictions of models ignoring the
electrochemical effects of the CL, andwill be investigated later
with reference to experimental results.

In the modeling results of equations (38a) and (38b), the
parameter γ is the transduction gain which depends on the
effect of polymer-electrode interface topography on the mech-
anical properties of the eIPMC. This parameter can be under-
stood as a tuning factor that lumps the degree of mechan-
ical asymmetry between the top and bottom polymer-electrode
interfaces. Particularly, γ= 0 for nominally identical flat inter-
faces and γ > 0 in the case of one-sided engineered interfaces,
see also [28].

The physical interpretation of the circuit elements and equi-
valent circuit impedance, as well as the OC voltage and SC
current behavior, will be discussed in the following section
which also emphasizes the significant modeling predictions.

2.7. Discussion and predictions of the modeling framework

In this section, we aim at enhancing our understanding of the
modeling results by providing their physical interpretation.
Additionally, we will outline significant predictions derived
from the modeling section to establish a foundation for our
experimental studies. In particular, modeling results will high-
light the predicted differences and trends expected between
the properties and performance of traditional (control) IPMCs
versus those of the proposed eIPMC compression sensors.

Our first step is to obtain the dimensional version of
the circuit elements in equation (36). This can be done by

resorting to dimensional analysis of the definitions of cur-
rent, voltage, and impedance. In particular, because I= I0Ĩ
with I0 = εRT D/(Fhλ2D), the characteristic impedance is
Z0 = hλ2D/(εD), the characteristic capacitance is C0 =
ε/λD, and the characteristic Warburg parameter is W0 =

ε
√
D/(hλ3D). Therefore, we obtain for the dimensional values

C1 = C0C̃1 =
ε

λD
, (39a)

C2 = C0C̃2 =
C0

1+ n
=
(
(ε/λD)

−1
+(εcl/d)

−1
)−1

, (39b)

W=W0W̃=W0m=
ε
√

Dclϕ2

λ2D
, (39c)

R= Z0R̃=
2hλ2D
εD

, (39d)

where a superimposed tilde indicates nondimensional values.
Based on these dimensional values, the circuit model can

be restructured as in figure 5, which illustrates a ‘physics-
based’ circuit model of the eIPMC sensor, along with a schem-
atic representation of the various electrochemical effects. The
physics-based model includes three capacitances, function of
the permittivity of the bulk and CL, the thickness of the CL,
and the Debye screening length. The first capacitance C1 in
equation (39a), can be interpreted as the double-layer capa-
citance, developing over a characteristic thickness λD, near
the CL-electrode interface, denoted as CDL in the physics-
based circuit. The capacitance C2 in equation (39b), can be
interpreted as two capacitances in series, CDL and CL. In this
instance, CDL represents the double-layer capacitance near
the interface between the polymer and the movable electrode.
On the other hand, CL signifies the capacitance associated
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Figure 5. (a) Equivalent physics-based circuit model of the eIPMC
dynamic compression sensor. (b) Schematic representation of the
electrochemical effects.

to the charge storage in the CL, developing over a thick-
ness d. Equation (39c) suggests that the Warburg impedance
is influenced by counterion diffusion within the CL, the per-
mittivity of the bulk region, and the Debye screening length.
This impedance governs the diffusivity process and sens-
ing behavior of the eIPMC. Finally, the circuit element R in
equation (39d), represents the TTT resistance in the eIPMC
sample.

Although our modeling framework is not immediately
applicable to traditional IPMCs (with nominally flat elec-
trodes and no engineered interfaces), the physics-based circuit
model can however help inform predictions on the perform-
ance of eIPMCs versus conventional IPMCs when the latter
are interpreted with the models of [40]. Specifically, in [40]
the Warburg impedance model is used to account for electrode
surface roughness. Thus, because ε≪ εcl andD≫Dcl, it fol-
lows that the parameter m is strongly dependent on the diffus-
ivity of the CL and the polymer bulk region, while n hinges on
their permittivity. In the idealized traditional IPMC sample,
denoted in the following as ‘control’ sample, featuring two
perfectly flat interfaces, the absence of an engineered CL res-
ults in a smaller value for parameter m and a larger value for
parameter n compared to those of the eIPMC sample. Based on
these observations, we summarize this section with the main
theoretical predictions of our model (P1−P9), to be verified
later through specifically designed experiments.

P1: The OC voltage demonstrates a direct correlation with
the asymmetry parameter γ, the diffusivity parameter m, and
the externally applied pressure. This suggests that, for the
same applied pressure, the eIPMC sample which is charac-
terized by its asymmetric geometry and interfaces, exhibits
higher OC voltage compared to the control sample. These find-
ings are consistent with our earlier research [28, 39].

P2: The SC current demonstrates a direct correlation with
the asymmetry parameter γ, the diffusivity parameter m, and
the externally applied pressure and inverse correlation with
the permittivity parameter n. This suggests that for the same
applied pressure, the eIPMC sample which is characterized
by its asymmetric geometry and interfaces, exhibits higher SC
current compared to the control sample.

P3: Figures 4(e) and (f) indicate that the OC voltage has
a much slower response, in terms of rise time, than the SC
current to the step compressive load. The faster response of the
SC current also makes this response more susceptible to noise.
Noise sensitivity becomes more apparent when the noise has a
similar or faster timescale compared to the system’s response
time.

P4: Based on the qualitative predictions in figure 4 and on
the circuit model, the OC voltage, SC current, and equivalent
impedance of the circuit have similar cutoff frequencies. Using
our assumptions for m and n, this is located at ω/ω0 ≈ 1/(n+
1).

P5: As the frequency of the external compression load
increases beyond the cutoff frequency, the OC voltage and SC
current sensitivity decrease. This suggests that the diffusion
process lags behind the applied force, indicating an incom-
plete synchronization between the diffusion process and the
applied force. Above the cutoff frequency, with an increase
in frequency, the voltage and current sensitivities will reduce
with a −10dB/dec slope, highlighting the role of diffusion-
dominated behavior.

P6: The time domain OC voltage response of the eIPMC
sensor to a step input compressive force of magnitude p0
exhibits dynamics over time. This is in contrast to previous
modeling efforts that neglected the effects of the CL and
predicted instantaneous response to an input. The predicted
dynamics in the response to a step input is consistent with
what we have observed in our previous published studies [38,
39] and as such constitutes an important improvement in our
modeling framework. Our model suggests that, as the input
is applied, the voltage signal increases rapidly, scaling as

√
t,

then its rate gradually slows down as time progresses. This
behavior can be attributed to the diffusion process occurring
within the eIPMC sample. From a physical perspective, when
the step input force is initially applied, the diffusion process
starts at its maximum rate, leading to the rapid increase in the
OC voltage. However, as time progresses, the diffusion rate
gradually decreases, resulting in a slower rate of increase in the
OC voltage over time. The model predicts that the OC voltage
settles to its final value−γp0 asymptotically (in infinite time).

P7: As shown in figure 4(e), the time domain step response
of the eIPMCOC voltage, the transient starts synchronously to
the applied input force, suggesting that the diffusion process
within the eIPMC commences synchronously, without any
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transmission delay, as soon as the step input force is applied.
However, the voltage output does not track the compression
step input, in contrast to what predicted by models neglecting
the electrochemical effects of the CL.

P8: As shown in the time domain SC current response of
the eIPMC sensor to a step input compressive force, a differ-
ent behavior is observed compared to the OC voltage case.
Upon the application of the unit step compression force, the
SC current undergoes a rapid increase to reach its peak value,
followed by a gradual decrease towards its final asymptotic
value of 0. The rising response occurs over a much faster time
scale than the decaying response. This observation is consist-
ent with the notion of charge diffusion occurring within the
eIPMC, and dominated by the properties of the CL.

P9: As depicted in figure 4(f), the time domain SC current
response of the eIPMC starts immediately upon the application
of the step input force, without any transmission delay. Note
however that the peak value does not occur instantaneously
at the time instant when the step input is applied, in contrast
to what predicted by models neglecting the electrochemical
effects of the CL.

To verify these predictions, experimental investigations
will be conducted in the following sections. It is import-
ant to note that our modeling assumptions for an ideal con-
trol sample involve presuming completely smooth polymer-
electrode interfaces on both the top and bottom surfaces. This
would imply that the parameter γ is assumed to be zero for
the control sample, resulting in zero OC voltage, SC current,
and sensing voltage. However, experimental outcomes for the
control sample are not expected to align precisely with these
assumptions, as real interfaces are not perfectly smooth [37,
41]. The unavoidable asymmetry between the two electrodes
in the control sample contributes to the small but non-zero val-
ues observed for OC voltage and SC current [28]. Electrode
surface roughness is also to be expected in the eIPMC, but it
is not explicitly modeled in this work. Therefore, when com-
paring model predictions of equivalent circuit elements, OC
voltage, and SC current of the control and eIPMC sampleswith
experimental findings, we will focus primarily on the qualitat-
ive assessment of our models and results.

In addition, due to the underlying hypothesis of linear sens-
ing behavior, we will consistently focus on the discussion
of voltage and current sensitivities in dynamic conditions.
However, we remark that a comprehensive study on the beha-
vior of eIPMCs under static, varying compression load condi-
tions has been presented in our previous works [28, 38].

3. Fabrication and electrochemical testing

In this section, we report on the fabrication processes using
the traditional IPMC fabrication method and the PAT for the
control and eIPMC samples, respectively. To characterize the
electrochemical behavior of the fabricated samples, electro-
chemical impedance spectroscopy (EIS) testing is employed
to estimate the impedance of both plated control and eIPMC

samples. Based on the modeling section results, and our pre-
vious comprehensive process-structure-property relationship
characterization presented in [39], the microstructure causing
the asymmetry between two electrodes are expected to sig-
nificantly affect the electrochemical properties of the eIPMC
samples.

3.1. eIPMC fabrication

The eIPMC samples with engineered interface are fabricated
using the PAT. This fabrication process is thoroughly illus-
trated in our previous work [38]. Here, for completeness, we
provide only a brief description of the fabrication steps.

The process begins by abrasively roughening one side of the
as-received Nafion-1110 membrane sheet using 400 grit sand-
paper, creating two distinct sites for the development of metal-
polymer interfaces and introducing deliberate asymmetry into
the finalized eIPMC. This particular grit size is chosen based
on its higher sensitivity under compression, as observed in our
prior research [39]. After roughening, the samples undergo
chemical cleaning with 3% hydrogen peroxide followed by
rinsing in 1M sulfuric acid to remove impurities. The cleaned
Nafion is then plated using an electroless chemical reduction
(ECR) procedure, involving stirring in a 0.02M platinum solu-
tion and subsequent reduction with sodium borohydride. This
primary plating is repeated three times to ensure sufficient
platinum deposition. Secondary plating with aqueous tetraam-
ineplatinum (II) chloridemonohydrate solution follows, also
repeated three times to ensure the conductivity of the sample.
The plated samples are then soaked in a 1M lithium chloride
solution to conclude the plating process. Notably, both control
IPMC and eIPMC samples undergo identical plating processes
in the same chemical batches to minimize variations inherent
to the ECR process. Finally, the fabricated samples are cut to
size for electrochemical testing and OC voltage and SC cur-
rent measurements under dynamic compressive loads. When
cutting the fabricated sensor, all edges are trimmed to prevent
shorting within the sensor.

3.2. Electrochemical characterization

To verify our equivalent circuit modeling results and under-
stand the impedance behavior of both control and eIPMC
samples, EIS tests are performed on plated samples. Using this
test, the impedance of the sample can be extracted over a broad
range of frequencies. The setup is similar to what discussed
in [28]. In this setup, a Gamry Interface 1000 potentiostat is
used. The eIPMC and control samples, are cut to 1× 1cm2

dimensions. Adhesive copper tape is firmly attached to each
surface electrode of the sample to connect it to the poten-
tiostat. For the eIPMC sample, the surface with the abraded
side was connected to the ground terminal of the Gamry
potentiostat unit. All the electrochemical tests are performed
30 minutes after full submersion of the sample in deionized
water. The excitation AC voltage is set to 10mVrms, that
is well below the thermal voltage which is approximately
25mV. The frequency range between 0.01Hz and 100Hz with
20points/decade. To ensure electroneutrality of each sensor,

12



Smart Mater. Struct. 34 (2025) 025048 O Fakharian et al

Figure 6. Impedance magnitude of the control and eIPMC samples
from EIS measurements. Markers refer to mean values at each
tested frequency, and shaded bands indicate one standard deviation.

an initial delay of 100s was used. Eight samples are used for
this test, four eIPMC and four control samples. To ensure the
repeatability, each sample is tested three times.

In figure 6, the impedance magnitude of both the eIPMC
and control samples obtained from the EIS test is illustrated.
Each impedance magnitude plot for the control and eIPMC
samples represents the average of twelve measurements (with
four samples, each measured three times). In this figure, mark-
ers refer to mean values at each frequency, and shaded bands
showing one standard deviation, thus indicating the spread
of experimental measurements. Overall, the graph indicates
that for frequencies approximately below 20Hz, the eIPMC
exhibits lower impedance as compared to the control sample.
However, at frequencies exceeding 40Hz, the control samples
generally display lower impedance than the eIPMC sample.
As expected, especially in the low frequency range, the spread
of experimental data is due to the effect of the engineered
interfaces, and consistently with what observed in previous
research, is larger for the eIPMC samples. Due to increased
diffusion-dominated behavior, and thus somewhat slower time
scales, eIPMC sensing is not expected to outperform control
samples at very high frequencies. This effect can be anticip-
ated by referring to a more pronounced low-pass behavior in
the EIS data for the eIPMC samples.

To further validate our equivalent circuit model results,
figure 7 displays EIS measurements, in terms of magnitude
and phase, for one of the eIPMC samples, superimposed to a
fitted circuit model as in equation (36) and in figure 3. These
fits are plotted by assigning the circuit of figure 3 in the Gamry
software as the electrochemical element equivalent circuit.

While experimental results for the magnitude are in excel-
lent agreement with theoretical predictions, small discrepan-
cies can be observed for the phase. At high frequencies, we
hypothesize the unmodeled dynamics, likely a bulk capacitive
behavior as observed in [41], may be contributing to added
phase lag. Such effects are outside the frequency range of

Figure 7. Representative impedance magnitude (black) and phase
(red) measurements (markers) and fits (lines) for eIPMC
experimental results using the equivalent circuit model in
equation (36) and figure 3.

interest of this work. At low frequencies, we ascribe the dis-
crepancies in part to the difficulties associated to low fre-
quency spectroscopy (whereby one cycle extends for tens of
seconds during which nonlinear effects may take place), in
part to the small current magnitudes and difficulties associ-
ated in the discrimination of the phase, and in part, possibly,
to numerical reasons in the system identification subroutines
used. Despite these, we are confident that both magnitude and
phase fits demonstrate that our proposed model can correctly
capture the experimental data, thus supporting our modeling
hypotheses and analytical work in section 2.

4. OC voltage and SC current sensing experiments

In this section, we aim to verify our modeling results and pre-
dictions from section 2 through experimental measurements of
OC voltage and SC current sensing performance in dynamic
conditions. These measurements are also crucial for establish-
ing process-structure-property-performance relationships of
the eIPMC sensor, which will be further explored in section 5.
We begin by outlining the experimental setup, followed by an
analysis of the samples responses to various dynamic com-
pression sensing modes. These modes include the response to
single sine, step, and chirp input compressive forces.

4.1. Experimental setup

Figures 8(a)–(c) depict the schematic of the experimental
setup, as well as the side and the top view of the actual test-
bed, respectively. The setup utilizes a RIGOL DG1022 sig-
nal generator to generate desired electrical waveforms. These
are amplified in a Vibration Research VR565 power amplifier
to drive a Vibration Research VR5200 electrodynamic shaker
that is used to impart the force input to the test article. To uni-
formly apply the compression force to the IPMC sample, two
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Figure 8. Experimental setup for eIPMC OC voltages and SC current measurements: (a) Schematic view, (b) Side view of the real setup
without the eIPMC sample, (c) Top view of the real experimental setup with the eIPMC sample. Note that the circuits with (1)–(1) and
(2)–(2) connections are being used for OC voltage and SC current measurements, respectively.

aluminum cubes with flat parallel surfaces are utilized. One
cube is affixed to the shaker moving plate, while the other is
securely attached to a load cell to measure the input forces
to the sample. Both shaker and load cell are affixed to an
optical table. A spring (collocated in series with the meas-
urement chain), made from a thick flexible silicone layer, is
interposed between the aluminum cubes to help align their sur-
faces under slight pre-compression force, ensuring a nearly
uniform distribution of the compressive force on the IPMC
surfaces. One side of this silicon layer, which contacts the
IPMC sample, is covered with a thin steel plate to aid in dis-
tributing the compression force more uniformly. The IPMC
sample is positioned between the cube fixed to the shaker tip
and the steel layer covering the silicon layer. Both sides of
the IPMC samples are covered with conductive copper tape,
which connect the IPMC samples to the data acquisition cir-
cuit. Note that the inner side of the copper tape segments and
the surfaces of the steel layer and aluminum cube in contact
with the IPMC sample are insulated with non-conductive tape
to prevent short circuits and intermittent contacts during the
compression process.

In the experiments, in response to the provided mechanical
actuation, two sets of signals are acquired, that is, the impar-
ted force to the sensor and the IPMC electrical output, so as
to construct useful input-output relationships. Specifically, to
measure the applied force produced by the mechanical shaker
a Transducer Techniques GSO-100 load cell (calibrated with
known force) is used. The frame of the load cell is clamped
to a XYθ stage used to fine-tune alignment and distance

between the two aluminum cubes and the pre-compression
force applied to the eIPMC sample. The output voltage signal
generated by the load cell, proportional to the applied force,
is fed to a TMO-2 signal conditioner whose output is direc-
ted to a National Instruments data acquisition system NI USB-
6341 DAQ board. Finally, the two conductive copper tape seg-
ments which cover the IPMC sample route the sensor out-
put to an amplification circuit before acquisition. As shown
in figure 8(a), the amplification circuit consists of an LM324N
operational amplifier in inverting configuration, powered by
a ±5V DC power supply. When in configuration ‘(a)’, the
circuit voltage output yields Vout = (−R2/R1)VIPMC for the
OC voltage measurement. Similarly, when in configuration
‘(b)’, the circuit voltage output yields Vout =−R2IIPMC for the
SC current measurement. The circuit output voltage is fed to
the same DAQ board. A NI LabVIEW custom virtual instru-
ment (VI), configured with 10k samples to read and 1kHz rate
settings, is connected to the DAQ board for capturing data
from IPMC and load cell sensors. This setup is used to apply
external different compressive load to the eIPMC and control
samples. For this purpose, in the next sections, the single sine,
step, and chirp input force are used to measure the OC voltage
and SC current performance of the eIPMC and control sensors.

4.2. Response to single sine input compressive force

To experimentally investigate the dynamic behavior of the
eIPMC sensor, using the setup described above, we initially
apply various sinusoidal pressure inputs to the sensor sample,
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Figure 9. Sample OC voltage and SC current responses of the eIPMC sample to sinusoidal external pressure with 10Hz: (a) DAQ data
(blue line) and smoothed data (purple line) of the OC voltage; (b) DAQ data (blue line) and smoothed data (purple line) of the SC current;
(c) Applied periodic pressure using the shaker to extract the OC voltage; (d) Applied periodic pressure using the shaker to extract the SC
current; (e) Single-sided Amplitude Spectrum of the DAQ data of OC voltage; and (f) Single-sided Amplitude Spectrum of the DAQ data of
SC current.

with constant frequencies ranging from 1Hz to 20Hz. For
these single sine measurements, we used R2 = 15.2kΩ and
R1 = 1.192kΩ (nominal amplification gain of R2/R1 = 12.75)
in the amplification circuit. For all other measurements, we
utilized R2 = 23.62kΩ and R1 = 1.192kΩ (amplification gain
of R2/R1 = 19.81). Figures 9(a) and (b) display the actual
IPMC output (measured data divided by amplification gain)
OC voltage and SC current data, along with their smoothed
versions, for a representative input frequency of 10Hz. The
actual sensor measurement are obtained from dividing the
measured DAQ data by the amplification gain, and attenuat-
ing six harmonics of the AC line power frequency (60Hz)
using single-notch filters. Figures 9(c) and (d) show the load
cell data corresponding to the applied periodic pressure during
the OC voltage and SC current measurements, respectively. It
is evident that the OC voltage and SC current responses fol-
low closely the applied pressure, albeit with possible pahse
shift, a result which aligns well with our predictions P7 a P9
in section 2.7.

To confirm the responsiveness of the sensor to a sinusoidal
input, figures 9(e) and (f) show single-sided amplitude spec-
trum of the OC voltage and SC current raw data, respectively,
which accurately reflect the applied frequency of 10Hz. As
predicted in the modeling section, because the response of the
SC current is faster than the response of the OC voltage, its
measurements are more susceptible to noise, especially when
the noise has similar or faster nature than the SC current signal.
This result is consistent with our prediction P3 in section 2.7.

The presence of higher harmonics (essentially, exact multiples
of the forcing frequency) in the OC and SC response, may
be in part ascribed to the possible nonlinearity of the eIPMC
response, as well as to the non-ideal nature of the input sig-
nal. Indeed, while the applied pressure was intended to be per-
fectly sinusoidal, achieving perfect sinusoidal pressure exper-
imentally, particularly at high frequencies, poses challenges.
Several factors contribute to this deviation. Firstly, the stiff-
ness and damping rate of the silicone spring may vary dur-
ing compression and release cycles. Additionally, the silicone
spring may exhibit non-linear, hysteretic, and/or viscoelastic
behavior under certain conditions.

To compare the sensitivity to single sine input of eIPMC
sensors against the performance of control samples over dif-
ferent frequencies for both OC voltage and SC current cases,
the sensor responses were investigated over the band of input
frequency between 1 and 20Hz. Sensitivities of the samples
at each integer-number frequency are calculated for both OC
voltage and SC current data and plotted in figure 10. The res-
ults indicate that, in all frequency ranges, the eIPMC exhib-
its higher sensitivity than the control sample. Notably, in the
low frequency OC voltage measurement range, sensitivity is
improved of approximately 300%. Similarly, in the higher fre-
quency SC current measurement range, sensitivity is improved
of approximately 150%. These results are consistent with our
modeling predictions P1 and P2 in section 2.7. Moreover, the
difference between the sensitivity of the control and eIPMC
samples increases with the frequency for SC current, whereas
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Figure 10. OC voltage and SC current sensitivity increase in eIPMC sample relative to the control sample in different frequency ranges.

the OC voltage shows the opposite trend, consistently with
primary low-pass and high-pass behavior of the two sensing
modes. This phenomenon can be explained in view of the dif-
ferent diffusion measurement mechanisms in OC voltage and
SC current measurements.

4.3. Response to step input compressive force

Next, we investigate the OC voltage and SC current of an
eIPMC sample in the time domain in response to a step
compression force. Our recent work [38] has investigated
the OC voltage response of eIPMC under static compres-
sion step inputs with different amplitudes. The focus of this
work is not on investigating the step responses under vary-
ing amplitude inputs, but rather on precisely examining the
step response under a single amplitude compression input.
Additionally, we have extended our measurements to SC cur-
rents. Representative measurements are shown in figures 11
and 12, respectively, for illustration. These voltage and current
data are obtained from the raw measurements after applying a
low-pass filter to attenuate frequencies above 55Hz. For the
OC voltage, the response is also detrended. It can be observed
that both OC voltage and SC current results closely follow the
jumps in the input step pressure in a synchronized manner,
consistently with our predictions P7 and P9, and qualitatively
similar to the model predictions of the time domain responses
in figures 4(e) and (f).

In particular, the experimental measurement of the OC
voltage response indicates a behavior consistent with the pre-
dictions outlined in prediction P6, where upon the applica-
tion of a step compressive force, the voltage starts increasing
quickly at first, until plateauing at its maximum value at the
end of the step period. While this transient is associated to the
fast time scale of the highs and lows of the square wave input,

inspection of the long term behavior of the voltage response
shows a moderate drift in the signal. This is to be ascribed
to the presence of a mean value of the pressure input (pulsed
from zero, rather than alternating between a positive and neg-
ative value). This mean value, akin to a ‘zero-th order’ Fourier
series harmonic, contributes to a long term drift behavior of
the voltage signal consistent with what predicted in figure 4(e)
for an ideal step response.

Similarly, the experimental SC current depicted in figure 12
follows a pattern similar to prediction P8, with a rapid increase
to the maximum value upon the application of the step com-
pressive force, followed by a gradual decrease to reach the final
value at the end of the step period. Because of the presence
of very fast oscillations at the rising edge of the pressure sig-
nal, due to the mechanical nature of the force application, the
current signal displays strong spikes in correspondence of the
rising edge, as these high frequency components are ampli-
fied by the low pass nature of the current sensing mechanism.
Interestingly, the current signal in figure 12 does not exhibit the
drift in response to the mean value of the pressure wave due
to the high-pass nature of current transduction. These observa-
tions align well with the anticipated trends, further validating
the predictive capabilities of the model.

4.4. Response to chirp input compressive force

Finally, a linear sine sweep external pressure signal with 4kPa
amplitude (denoted as ‘chirp input’) ranging from 0.1 to 18Hz
is applied to both control and eIPMC samples over a time win-
dow of 30 seconds. Figure 13 illustrates the actual OC voltage
and SC current measurements of both the control and eIPMC
samples in response to the chirp input. Since the displayed
signal represents the raw measurements (black lines), without
applying any filter, its smoothed version (purple lines) is also
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Figure 11. OC voltage response (top plot) of the eIPMC sample to step compression pressure (bottom plot).

Figure 12. SC current response (top plot) of the eIPMC sample to step compression pressure (bottom plot).

included in the plots, to help observation and analysis. The
main feature of the OC voltage and SC current of the eIPMC
sample is that they exhibit a−10dB/dec slope, consistent with
the prediction from the modeling results shown in figures 4(c)
and (d) and our prediction P5 in section 2.7. Conversely, no
clear scaling dynamic trend is evident in the results from the
output of the control sample.

In figure 13, the chirp OC voltage and SC current responses
may not provide a very reliable estimate of the response

at very low frequencies, due to the relatively short dura-
tion of the excitation window. As a results, determining the
exact cutoff frequency is challenging. However, over the band
between 1 to 18Hz, the experimental data exhibit a slope
that corresponds to the modeling predictions. In addition, we
remark that unmodeled effects, including the drift and time-
dependent behavior of the eIPMC samples, complicate the
precise quantitative comparison between the modeling and
experimental results. Nevertheless, the qualitative trends are
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Figure 13. OC voltage and SC current sensitivities of control and eIPMC samples under chirp compressive force. Black lines refer to raw
spectral data, and the orange line is meant as a visual reference for the −10 dB/dec slope.

correctly captured, thus essentially validating our modeling
approach and results.

5. Discussion

The results and predictions derived from our modeling
provide a comprehensive understanding of eIPMC sensor
behavior, enabling a more robust correlation among the
process-structure-property-performance relationships. While
the process-structure-property connection in eIPMCs was
extensively investigated in our previous works [28, 39], char-
acterization of the performance in dynamic sensing condition
was incomplete. In this work, the OC voltage and SC current
predictions of our modeling framework were presented and
verified via designed experimental campaigns. Experiments
included the dynamic voltage and current response to single
sine, step input, and chirp excitations. To the best of our know-
ledge, this is the first time that these dynamic characteriza-
tions are presented for eIPMC systems. Comparison of exper-
imental findings for traditional IPMCs and novel eIPMCs are
found to be consistent with our modeling results and demon-
strate superior performance of our sensors as compared to the
control samples.

In light of the presented analytical and experimental res-
ults, the following observations are in order. As described in
section 3.1, eIPMC sensors were fabricated through PAT with
one side abraded surfaces (microfeatures). The microstructure
resulting from PAT was investigated in our previous work [39]
via SEM imaging, to provide surface characterization of

both eIPMCs and conventional IPMCs before and after the
plating process. SEM images showed the distinctive pattern
of abraded surfaces and grooves generated by the PAT. In
this work, we incorporated the mechanical and electrochem-
ical properties of this region by modeling a separate CL
layer. The engineered interface has two effects on eIPMC
sensor behavior. First, it augments the surface area of the
polymer-electrode interface, thereby increasing the capabil-
ity for charge accumulation near the electrode, thus enhan-
cing the sensor’s overall capacitive behavior. Second, because
of enhanced metal protrusions within the polymer, it ampli-
fies the inhomogeneous strain distribution and modifies the
charge dynamics within the polymer. Both these factors, con-
sequently, improvemechanical and electrochemical properties
of the sensor and can synergistically improve its performance.

The effect of electrochemical asymmetry of the CL is cap-
tured in the modeling framework in two ways. Of the three
lumped capacitances identified by the circuit model, two are
identical double-layer capacitances formed at the polymer-
electrode and polymer-CL interfaces, independent of CL prop-
erties, see equation (39a). Vice versa, the third capacitor
describes the capacitance due to the CL, see equation (39b).
Interestingly, if the CL is assimilated to a flat plate capa-
citor, the characteristic separation d of the plates coincides
with the CL thickness, hinting to absence of charge bound-
ary layers in the CL region. The CL is also responsible for a
Warburg impedance effect, see equation (39c). This resistance
to ion migration models diffusion processes occurring within
the polymer membrane. The Warburg impedance effect arises
from the electrochemical properties of the CL and was not
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explicitly incorporated in our previous work [39]. However,
it provides important insights into the transport properties of
IPMC materials, and is the key to explaining the sensing step
response and its associated time dynamics, ultimately influen-
cing OC voltage, SC current, and overall sensor behavior. As
compared to traditional IPMCs, for whichCLs can be expected
to occur due to the morphology unpredictably created by the
ECR fabrication method [40], in our novel eIPMCs large scale
CLs are deliberately introduced via the engineered electrode,
leading to superior sensing behavior compared to the control
sample. These conclusions are supported by the EIS results
presented in section 3.2 which show that the eIPMC sample
exhibits smaller impedance at low frequency, compared to the
control sample. This important experimental result suggests
enhanced diffusion and ion transfer within the polymer mem-
brane of the eIPMC sample due to the presence of the engin-
eered CL.

While the proposed model displays predictive capabilities
and experimentally validated qualitative results, it is import-
ant to acknowledge some limitations. In particular, our model
assumes perfectly flat interfaces at the polymer-electrodes
for IPMCs and eIPMCs, and at the CL-electrode and CL-
polymer for eIPMCs. For IPMCs, this hypothesis would res-
ult in no mechanical asymmetry and homogeneous strain dis-
tribution. However, actual IPMCs exhibit roughness at both
interfaces [37], creating mechanical asymmetry, and likely
two CL capacitance and two Warburg impedance effects. This
roughness contributes to the control sample’s sensing beha-
vior, observed in the experiments. Consistently with our devel-
opments, the sensitivity of traditional IPMCs is however much
less than that of eIPMCs, which outperform their traditional
counterparts in both voltage and current sensing tests, at low
and high frequencies. A second effect observed in practice,
but not explicitly accounted for in the model (stemming from
the neglected surface roughness), lies in the development of
large surface areas. Surface characterization results in [39]
revealed mud-crack-like islands on the electrode surface, with
a notably higher abundance observed in eIPMC samples. This
increased presence of islands suggests a larger actual sur-
face area development, indicating a more pronounced capa-
citive behavior for eIPMCs. This is reflected in the low fre-
quency EIS results which indirectly support this observation.
Overall, these effects impact the electrochemical behavior of
the sensor, effectively enhancing its sensing capabilities.

Finally, the experimental performance results of eIPMC
sample, including OC voltage and SC current dynamic sens-
ing, were analyzed in detail. These results offer valuable
insights into the sensor’s behavior under compressive loads.
As predicted by our modeling, the eIPMC sample are endowed
by larger CL capacitance and Warburg impedance compared
to the control sample, enhancing its dynamic sensing cap-
abilities. Our compression sensors demonstrate optimal per-
formance within a specific frequency range. Above the cutoff
frequency, the sensitivity of the sensor decreases as the fre-
quency increases, with typical slope of−10dB/dec. This phe-
nomenon reflects the diffusion mechanism within the eIPMC

sensors, where the diffusion process is too slow to track the
applied force at higher frequencies.

6. Conclusions

This paper investigates the dynamical behavior of eIPMC
sensors under compressive external loads, both analytically
and experimentally. A detailed model incorporating a CL for
the abraded interface between the polymer and electrode was
developed to explicitly include the effect of mechanical and
electrochemical asymmetries. Additionally, a new equival-
ent circuit model for eIPMCs with one engineered electrode
was introduced. The model provides useful insight to better
understand the superior sensing mechanism of eIPMCs under
dynamic compression. The modeling results and predictions,
presented at the end ofmodeling section, serves as the basis for
our experimental investigations. To investigate the mechano-
chemo-electrical behavior of the IPMC and eIPMC samples
experimentally, these were fabricated using both traditional
fabrication methods and a PAT. To further study the electro-
chemical behavior, EIS tests are performed on the samples.
Finally, the experimental performance of eIPMCs in terms of
OC voltage and SC current dynamic sensing, are analyzed in
detail. Experimental findings on EIS test, OC voltage, and SC
current align well with the qualitative modeling predictions,
providing robust validation and advancing our understanding
of eIPMC sensor behavior. As predicted by our modeling, the
eIPMC sample are endowed by larger CL capacitance and
Warburg impedance compared to the control sample, enhan-
cing its dynamic sensing capabilities. The sensitivity compar-
ison between the IPMC and eIPMC samples at single frequen-
cies ranging from 1 to 18,Hz shows an increase of 220 to 290%
in open-circuit voltage and 17 to 166% in SC current sens-
itivities. This confirms the improved sensitivity of eIPMCs
under dynamic loads compared to traditional IPMCs over a
broad actuation frequency range. These findings suggest that
eIPMC sensors are well-suited to be utilized under dynamical
compressive loads, potentially expanding their applications
in various critical engineering scenarios. Future work will
focus on the exploration of different sensing modes enabled
by eIPMCs.
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