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Abstract— This paper studies the application of automatic
collision avoidance algorithms to help pilots improve their
maneuvering of unmanned aerial vehicles (UAVs). Automatic
collision avoidance technology can help reduce the cognitive
workload of a pilot, especially when flying UAVs through clut-
tered and complex unstructured environments. The feedforward-
based algorithm reviewed herein exploits the dynamics of the
aerial robot and if a collision is predicted, the algorithm modifies
the operator’s input to avoid a collision. The algorithm has
recently been implemented on a quadcopter UAV with on-board
computation and sensing. To quantify the improvement in pilot
performance compared to other methods, human-subject studies
were conducted using a simulated quadcopter UAV running
the collision avoidance algorithms. Specifically, a comparison is
made between the feedforward-based algorithm, the basic risk
field algorithm (a variant on potential field), and full manual
control. Experimental results show that the feedforward-based
algorithm performs significantly better than manual control by
lowering the number of collisions and increasing the UAV’s
average speed, both of which are extremely vital, for example,
for UAV-assisted search-and-rescue applications. Compared to
the potential-field based algorithm, the feedforward algorithm
enabled the pilot to operate the UAV with significantly higher
average speeds without drastically affecting the number of
collisions.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), particularly small low-
cost platforms, have gained considerable attention for civil
and commercial applications ranging from mapping [1], pre-
cision farming [2], traffic management [3], and environmental
monitoring [4]. More recently, the emergence of small mul-
tirotor UAVs (such as quadcopters), which can access indoor
locations and maneuver through environments that are hard
to reach or unsafe for humans, has captured the attention of
the public-safety sector and law-enforcement officials as a
viable tool to enhance situational awareness for search and
rescue, law enforcement, and/or emergency response [5]–
[7]. However, one of the most daunting tasks for even a
skilled UAV pilot is controlling the aircraft for collision
avoidance, especially in tight and compact environments such
as inside of a partially collapsed building where usually the
only feedback information is a live-camera feed through first-
person view (FPV) mode (see Fig. 1 illustrating the typical
UAV system that is controlled through a remote command
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Fig. 1: A UAV system for search and rescue and emergency
response, where pilots control the unmanned aerial vehicle
(UAV) through (a) a mobile command station or similar
interface following (b) deployment of (c) the UAV with on-
board cameras and sensors. Control signals and data flow
between the UAV and command station. Images courtesy of
Mike Richards and Drone America, Inc.

station). Thus, automatic collision-avoidance technology for
tele-operated UAVs (as well as mobile ground robots) is
critical and necessary to allow pilots to focus on higher-
priority tasks such as locating survivors and acting quickly
to help assist survivors or call for additional support.

To quantitatively investigate the impact of automatic col-
lision avoidance technology on UAV-pilot performance, the
contribution of this paper is a human-subject study that
compares the performance between a feedforward-based col-
lision avoidance algorithm [8], [9], a basic risk (potential)
field algorithm [10], and full manual control. Specifically,
experiments are described where pilots operate a simulated
UAV system running the algorithms through three maze-like
environments. In the experiments, the number of collisions,
the path length, trial time, and average speed are recorded.
There are four hypotheses being tested in this paper. First,
it is hypothesized that the feedforward-based algorithm in
this paper will result in fewer collisions than manual control.
Second, of the trials that do not collide, it is hypothesized that
there will be higher operating speeds (i.e., shorter completion
times) with the feedforward-based algorithm over manual
control. Third, it is hypothesized that the feedforward-based
algorithm will result in fewer collisions than the potential-
field variant, the basic risk field algorithn [10]. Lastly, it is hy-
pothesized that the feedforward-based algorithm will provide
higher operating speeds than the basic risk field algorithm.
The first, second, and fourth hypotheses are supported by
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the experiments, while the third hypothesis is inconclusive,
but suggests that there is not a significant difference in the
frequency of collisions between the two algorithms.

II. STATE-OF-THE-ART IN COLLISION AVOIDANCE
Early research on motion planning and collision avoidance

for mobile robots include potential-field planners [11] and the
vector field histogram (VFH) approach [12]. Improvements
were made to the VFH in [13]. Although these algorithms
are effective, they do have some potential limitations for
applications such as search and rescue. For instance, these
algorithms have an inherent requirement to keep the robot
some minimum distance away from the obstacles in the
environment. The need to maintain a minimum distance from
obstacles such as walls comes from the fact that the algo-
rithms do not explicitly consider the dynamics of the robot.
However, in a search and rescue scenario the robot may need
to be controlled near walls in constrained environments or in
order to quickly to survey the environment. Thus, factoring
in the robot’s dynamics can improve the performance of the
collision-avoidance process.

Collision avoidance methods that do consider the robot’s
dynamics typically require a global knowledge of the envi-
ronment [14]–[16]. Unfortunately, such information may not
be readily available at the time of search and rescue and
often, not practical. Furthermore, these algorithms are more
computationally expensive than the reactive planners such as
potential-fields and VFH.

Herein, a feedforward-based local collision-avoidance al-
gorithm is presented that has similarities to both classes of
collision avoidance algorithms [8], [9]. More specifically, the
algorithm considers the robot’s dynamics and extrapolates
the robot’s trajectory given an operator’s input. The resulting
trajectory is checked for collisions against the obstacles in
the environment. If a collision is predicted, the user’s input is
modified to guide the robot along a collision-free trajectory.
Similar to the reactive planners, such as potential-field, this
algorithm only requires a limited knowledge of the local
environment in the immediate vicinity of the robot. It also has
similarities to more complex planners through the propagation
of the trajectory using the robot’s dynamics. However, rather
than optimizing this trajectory explicitly, the algorithm is
designed to alter the user’s input directly that results in
collision-free motion while maintaining the user’s intent as
closely as possible.

The remainder of this paper is structured as follows. The
feedforward-based automatic collision-avoidance algorithm is
reviewed in Sec. III. The methodology of the experiments
is presented in Sec. V and the results are presented and
discussed in Sec. VI. Finally, concluding remarks and a
discussion of future work are presented in Sec. VIII.

III. AUTOMATIC COLLISION AVOIDANCE
This section provides a review of the feedforward-based

automatic collision avoidance (ACA) algorithm studied in
this paper. The full theoretical details for the deterministic
and stochastic approaches are presented in [8] and [9],
respectively.

TABLE I: Quadcopter model parameters
Parameter kpv kpx kdx kpy kdy kpz kdrag

Value 10.0 150.0 2.5 150.0 2.5 3.5 0.25

A. System Equations and Robot Workspace

Consider a robot with general, nonlinear equations of mo-
tion and a state space of arbitrary dimension m. Let X ⊂ R

m

be the state space of the robot and let U ⊂ R
n be the control

input space. The continuous-time equations of motion of the
robot are defined by the function f ∈ X × U → R

m, i.e.,

ẋ(t) = f(x(t),u(t)), (1)

where x(t) ∈ X and u(t) ∈ U are the state and control input
at time t, respectively.

Given an initial state x = x(0) and a constant control input
u up to the time-horizon τ , the state of the robot for t > 0
is defined by

x(t) = g(x,u, t), (2)

where g ∈ X × U × R → X represents the solution to the
differential equation (1).

The workspace in which the robot maneuvers is R
d, where

typically d ≤ 3. The obstacles occupy a subset of the
workspace, hence O ⊂ R

d. Let R(x) ⊂ R
d denote the subset

of the workspace occupied by the robot when it is in state
x ∈ X . Then, a colliding state is defined as R(x(t))∩O �= ∅.

Remark: In order to maintain compatibility with the imple-
mentation of on-board sensing, those regions of the workspace
that are occluded by the obstacles as seen from the current
state of the robot are also considered obstacles. In other
words, the subspace of the workspace that cannot be seen
by the robot is also an obstacle and belongs in O.

The system model has a 12-dimensional state x =
[pT ,vT , r,w]T ∈ X that consists of position p ∈ R

3,
velocity v ∈ R

3, Euler angles r ∈ R
3, and angular

velocity w ∈ R
3. The 4-dimensional control input u =

[r�x, r
�
y , v

�
z , w

�
z ]

T ∈ U consists of the desired roll and pitch
angles, r�x and r�y , respectively, the desired vertical velocity
v�z , and the desired yaw rate w�

z . Assuming a quadcopter UAV
system, the equations of motion are

ṗ = v, (3)

v̇ = R
[
0, 0, kpv(v

�
z − vz)

]T − g− kdragv, (4)

ṙ = w, (5)

ẇ =

⎡
⎣
kpx(r

�
x − rx)− kdxwx

kpy(r
�
y − ry)− kdywy

kpz(w
�
z − wz)

⎤
⎦ , (6)

where R is the rotation from the quadcopter
body frame into the world frame, the terms
kpv, kpx, kdx, kpy, kdy, kpz, and kdrag are gains whose values
(given in Table I) are equal to an analogous physical
system. Similar to many physical quadcopters, the simulated
quadcopter has a maximum limit on the roll and pitch angles
of 0.35 rad (approximately 20.0 degrees).
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B. Problem Statement
The collision avoidance problem is to find a minimal

change Δu ∈ U to the control input u ∈ U given the
initial state x ∈ X of the robot that avoids collisions with
obstacles within a time horizon τ , hence

minimize: ΔuTQΔu, (7)

subject to: ∀t ∈ [0, τ ] :: R(g(x,u +Δu, t)) ∩ O = ∅,
where Q ∈ R

n×n is a positive-definite weighting matrix.

C. Approach
Given the robot’s current state x and the current control

input u (from the operator), the positions of the robot in the
future are found by

p(t,Δu) ≈ p�(t) + J(t)Δu, (8)

where p�(t) is the position the robot would obtain if the
operator’s input remains constant, i.e., Δu = 0, and J(t) is
the Jacobian of the position with respect to the input.

For a trajectory that is determined to be collision free (∀t ∈
[0, τ ] :: R(p�(t)) ∩ O = ∅), the operator’s current input u
is deemed safe and does not need to be changed, hence the
change in input is set to zero, i.e., Δu = 0. Conversely, if
a collision does occur (∀t ∈ [0, τ ] :: R(p�(t)) ∩ O �= ∅) the
operator’s input leads to a collision and must be corrected in
order for the robot to obtain a collision-free trajectory, hence
the change in input is non-zero, i.e., Δu �= 0. The process to
select a non-zero change in input is decribed next.

Let pc be the first point along the trajectory in which the
robot collides with an obstacle (see Fig. 2), thus

pc = p�(min{t ∈ [0, τ ] | R(p�(t)) ∩ O = ∅}). (9)

Given a unit normal vector n of the obstacle O that points
into the free workspace, consider a halfspace with the same
normal n (pointing toward the free space) that provides a
convex approximation of the local free space. The halfspace
is located at the collision point pc, determined by Eq. (9).

From Eq. (9), a linear constraint is defined on the position
p(τ,Δu) of the robot at time τ , hence

nTp(τ,Δu) > nTpc. (10)

The constraint on the robot’s position in Eq. (10) can be
transformed into a constraint on its change in input Δu by
substituting in Eq. (8), thus

nT J(τ)Δu > nT (pc − p�(τ)). (11)

Finally, Eq. (7) is approximated using Eq. (11) as

minimize: ΔuTQΔu (12)

subject to: nTJ(τ)Δu > nT (pc − p�(τ)),

where solving this convex optimization, such as is done by
the RVO library in [17], provides a collision-free change in
input Δu. In summary, the total control input provided to the
robot is u+Δu. Additional details of the automatic collision
avoidance algorithm can be found in [9].

p(τ,∆u
2
)

r
r

pc

n

p(τ,0)

p(τ,∆u
1
)

R

O

Fig. 2: Robot with its bounding geometry R, where the
estimated trajectory for a user’s input is given with the desired
position at the time horizon p(τ, 0) causing a collision with
the obstacle O at pc. The new collision-free input at time
τ is solved for; however, in convex corners this process
needs to be iterated to detect possible collisions between the
updated trajectory. Given the first iteration, the new estimated
trajectory with the desired position as p(τ,Δu1) and a new
input is chosen if a collision occurs. This is repeated until the
trajectory is collision free as shown by p(τ,Δu2).

D. Handling Convex Corners and Edges through Iteration
The use of an approximation of a convex region of the local

free space near the robot’s trajectory means that it cannot be
assumed that the newly selected control input u+Δu avoids
collisions with respect to all obstacles for all time t ∈ [0, τ ].
This is true near convex edges or corners of the workspace
as shown in Fig. 2. However, the approach can simply be
repeated in an iterative fashion to solve this problem, where
additional details can be found in [8].

E. Including Yaw as an Additional Degree-of-Freedom
In Refs. [8], [9], yaw motion is treated as a redundant

degree-of-freedom and is held constant. However, to better
enable a pilot to survey an area in a search-and-rescue
scenario, holding the yaw constant limits performance. Yaw
motion is especially necessary if the pilot is flying through a
first-person video feed using a forward-facing camera.

To enable the yaw to be controlled by the pilot, the
yaw degree-of-freedom is not affected by the algorithm.
The algorithm determines the feedforward trajectory estimate
assuming the user’s current commanded yaw rate remains
constant over the time horizon τ , similar to the desired
roll and pitch angles. Through the Jacobian in Eq. (8), the
algorithm can determine new roll and pitch angles and vertical
velocity to avoid a collision given a constant yaw rate.

IV. POTENTIAL-FIELD FOR UAV TELE-OPERATION
The potential-field algorithm provides a repulsive force

on the robot based on the distance between the robot and
an obstacle detected by a range sensor [11]. The repulsive
force increases as distance between the robot and the obstacle
decreases. However, since this algorithm produces forces as a
function of distance, it can still provide large repulsive forces
even if the robot is moving away from a nearby obstacle,
which is not desirable for tele-operated applications.
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In [18], the potential-field algorithm was augmented to
include the velocity and acceleration constraints of a robot.
However, in this approach the repulsive force is zero when the
robot has no velocity component towards the obstacle. This
is undesirable for a tele-operation application where a user
may suddenly provide a control input towards that obstacle
and the robot can collide if a repulsive force cannot counter
that input fast enough. Lam et al. [10] presented the basic risk
field (BRF), a potential-field variant, to address this concern.
Their approach provides a small repulsive force for nearby
obstacles even when there is no velocity component of the
robot towards that obstacle. Therefore, there is always a small
repulsion force pushing the robot away from obstacles, but
the repulsive force is only a large force when reacting to
velocities toward the given obstacle. The potential function
P (d, vi) that defines these repulsive forces given in [10] is

tres(d, vi) =
amaxvi

2damax − v2i
, (13)

P (d, vi) =

⎧⎪⎪⎨
⎪⎪⎩

1, if tres ≤ 0

1, 1
tres(d,vi)

+ 1
d ≥ 1

G

G
(

1
tres(d,vi)

+ 1
d

)
, otherwise,

where amax is the maximum acceleration away from an
obstacle, vi is the robot’s velocity component towards the
obstacle, d is the distance between the robot and obstacle,
and G is a gain to tune the magnitude of the repulsive gain.

V. EXPERIMENTAL METHODS

A. Subjects
Three experiments were performed by twenty four subjects

(eight per experiment). The subjects were recruited from the
University of Utah student population. The subjects had the
physical ability to use a commercial video game console con-
troller and were at least eighteen years of age. The subjects
were not compensated for their participation. The experiment
was approved by the University of Utah Institutional Review
Board (IRB No. 00082430).

B. Device
The quadcopter model provided in Sec. III-A is imple-

mented in simulation on a desktop computer with an Intel
Core i5-3470 3.2 GHz processor, 8GB RAM, and 64-bit
Ubuntu 12.04 operating system. The algorithms are imple-
mented using the Robot Operating System (ROS) [19]. The
aircraft is flown in first-person view (FPV) mode, where
simulated FPV is made available to pilots operating the UAV.
The simulator includes a 2D LIDAR to detect the obstacles in
the environment in real-time during the experiments. Figure 4
shows a test pilot operating the simulator.

Three environments were created in simulation using the
V-REP software package [20] as shown in Fig. 3. The
environments each used the same starting position of the
quadcopter but have different finish locations. The corridors
of each environment are either 1m, 1.5m, or 2m wide. The
simulated quadcopter has a diameter of 0.564m.

Quadcopter Starting Locations

Finish Locations

Fig. 3: Three different mazes used during the experimental
trials. The mazes have the same starting location, but different
finish locations as annotated in the image.

Fig. 4: Photograph of test pilot operating the simulator.

C. Design
A full-factorial repeated-measures design is used for the

three experiments. There are two factors being considered
in the experiments: the control method (manual, automatic
collision avoidance, or basic risk field) and the environment
(mazes shown in Fig. 3). A block design is used in which the
three environments are presented to the participant in eight
blocks of three, for twenty four total trials. The order of the
mazes in each block of three mazes is a random permutation.
Each environment is seen an equal number of times by all
participants.

The experiments compare pairs of control methods. The
first and second experiments compare manual control to the
ACA algorithm. These studies test the hypotheses that the
ACA algorithm will result in fewer collisions than manual
control, and that when collisions do not occur, the ACA
algorithm will enable higher operating speeds. During a pilot
study, it was observed that many subjects preferred to fly the
quadcopter similar to a car, where they provided a constant
forward input and steered the UAV through yaw. However,
the yaw rate input being applied with maximum roll and/or
pitch can lead to collisions due to the assumptions in the ACA
algorithm’s development. Thus, the first experiment allowed
the quadcopter to yaw, which led to a relatively high number
of collisions. The second experiment is designed such that
the quadcopter cannot yaw. Instead, the camera rotates and
the pilot’s roll and pitch commands are defined in the camera
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frame and mapped into the robot frame. The third experiment
compares the BRF algorithm to the ACA algorithm. This
experiment tests the hypotheses that the ACA algorithm will
result in fewer collisions than the BRF algorithm, and that
the ACA algorithm will enable higher operating speeds than
the BRF algorithm. In [10], the simulated quadcopter was
a velocity controlled robot with simplified dynamics. The
simulations in this paper, however, utilize the full nonlinear
dynamics of the quadcopter with inputs including roll and
pitch, i.e., accelerations. There were unnecessary oscillations
observed when using the BRF so a damping term was
included for the roll and pitch inputs.

In each experiment, each participant completed half of their
trials (twelve trials) using one of the two control methods and
then the second half with the alternate control method. The
experiments alternated the order of the control methods for
each successive participant to attempt to minimize learning
effects on the results. For example, the first subject would be
tested first using manual control and second with the ACA
algorithm, then the second subject would first use the ACA
algorithm and use manual control second.

D. Procedure
For each experiment, the subjects completed two sessions

with at least 24 hrs between each session. For each session,
the subject sat at a desk and held a wireless game console
controller while directly facing a 24-in desktop computer
monitor located approximately 24 in away from the subject.
The subject is instructed that, for each trial, they should
attempt to complete each maze as fast as possible while
avoiding collisions. A collision is indicated by the screen
turning red and the current trial stopping automatically.

Before each session, the subject is required to practice with
the control method of that session for three minutes. The
quadcopter model is the same during the practice as it is
during the experiments. The environment during the three
minutes of practice consists of 2m wide hallways and has
a similar appearance to the experiment’s environments.

During the experiment, the subject knows which control
method they are using but not the technical details of the
algorithm (or lack thereof). A verbal cue is given to the
subject before each trial began. A trial ends automatically
with a collision or the crossing of the finish line, after which
the process is repeated for all twelve trials of that session.
Each session typically lasts 15–30min for each subject, with
each subject completing two sessions.

In the first experiment, the subjects are informed that the
automatic collision avoidance algorithm could still have colli-
sions if a full roll or pitch input is applied at the same time as
a yaw input, but no further information about the algorithm
is provided. In the second and third experiments, when the
quadcopter cannot yaw, the subjects are not provided with
this additional information about the algorithm.

E. Measures
To quantify the performance of the subjects operating the

simulated quadcopter, their performance is defined by several
metrics: if a collision occurred (yes/no), the time to complete

each trial, the path length traveled, and the average operating
speed. The time, path length, and average operating speed are
recorded for the duration of each trial, which ended in either
a collision or crossing the finish line.

The collision data can be represented as a binomial dis-
tribution and analyzed using the Friedman test [21]. The
maps had a small effect on the results and are distributed
equally in the experiment design, therefore, the collisions are
only categorized on one level: by which collision-avoidance
algorithm (or lack thereof) is being used by the subject.
The remaining measures can be analyzed using a two-way
ANOVA [22].

VI. EXPERIMENTAL RESULTS
The experimental results (the means, standard deviations,

and comparison metrics) are summarized in Table II. Analysis
of operating speeds for only the trials that are completed (i.e.,
no collisions) is provided in Table III. Figure 5 provides
box plots of the data set for measures in which ANOVA
is performed (i.e., all measures except collisions). Table IV
shows if each participant’s individual results supported (✓) or
contradicted (✕) the hypothesis being tested with statistical
significance at 95% confidence. A “-” represents that no
conclusions can be drawn for or against the hypothesis with
statistical significance. For hypothesis two, that the ACA al-
gorithm enables higher operation speeds than manual control
for completed trials, a value of “N/A” means that no manual
trials were completed, or in other words all twelve trials
resulted in a collision for that participant and no statistical
testing can be completed regarding the second hypothesis.

A. Experiment One: Automatic Collision Avoidance (ACA)
vs. Manual Control With Yaw

In regards to Hypothesis 1, the statistical results that
include the data from all subjects and all trials (Table II)
indicate that the ACA algorithm results in significantly less
collisions than manual control. The mean number of colli-
sions decreased by 40% from manual control when using the
ACA algorithm. When considering the results for individual
subjects (Table IV(a)), four out of the eight subjects showed
a significant improvement when using ACA and the other
four subjects are inconclusive. No subject showed significant
improvement when using manual control.

In regard to Hypothesis 2, the statistical results from all
subjects and completed trials (Table III) indicate that the
ACA algorithm enabled pilots to fly the UAV with higher
average operating speeds compared to manual control with a
70% increase in speed. Considering only the individual results
(Table IV(a)), two of the eight subjects showed improvement
in their operating speeds with statistical significance. Another
two subjects are inconclusive, with no statistical significance
between their speeds. The remaining four subjects did not
complete a single trial with manual control. Although the
statistics of their operating speeds cannot be assessed, the
fact that they did not complete a single trial manually
demonstrates the usefulness of the ACA algorithm. No subject
showed improvement when using manual control compared
to the ACA algorithm.
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TABLE II: Distribution statistics for all subjects and all trials

TABLE III: Distribution statistics for completed trials only,
for all subjects

(a) Sample Means (µ) and Stan-
dard Deviations (s)

Avg. Speed
µ s

E1 Man. 0.46 0.14
ACA 0.78 0.23

E2 Man. 0.76 0.18
ACA 0.96 0.12

E3 BRF. 0.70 0.09
ACA 0.95 0.11

(b) Comparison metrics

Avg. Speed
F p

E1 21 2.5e-5
E2 26 1.7e-6
E3 268 5.1e-37

B. Experiment Two: ACA vs. Manual Control Without Yaw
The second experiment addressed Hypotheses 1 and 2 as

well, but, unlike the first experiment, in this experiment the
quadcopter cannot yaw. Hypothesis 1 is strongly supported by
the statistical results for all subjects and all trials (Table II).
There is an observed 88% decrease in the number of collisions
from manual control when using the ACA algorithm in this
experiment. Looking at the individual subject’s results in
Table IV(b) shows that, in fact, every subject had fewer
collisions with the ACA algorithm than they did with manual
control with statistical significance.

Considering the statistical results from the completed trials
for all subjects (Table III), Hypothesis 2 is supported as well,
where the subjects had a higher mean average operating speed
with statistical significance with a 26% increase in speed. The
individual results in Table IV(b) supports Hypothesis 2 as
well. Four of the eight subjects showed improved operating
speeds with statistical significance. One of the eight subjects
is inconclusive and the remaining three could not be analyzed
because they did not complete a single trial using manual
control. None of these subjects showed improvement with
significance when using manual control.

C. Experment Three: ACA vs. Basic Risk Field (BRF)
This experiment addressed Hypotheses 3 and 4. Regarding

Hypothesis 3, there is no conclusive evidence found from the
experiment. There is no significant difference in the mean
number of collisions between the ACA algorithm and the
BRF algorithm. This is the case for all subjects and all trials
(Table II) as well as each individual subject (Table IV).

Although Hypothesis 3 is inconclusive, the results of this
experiment strongly support Hypothesis 4. The subjects per-

TABLE IV: Hypothesis results for individual subjects

(a) Exp. 1

H1 H2
S1 ✓ N/A
S2 - -
S3 - N/A
S4 - ✓
S5 ✓ N/A
S6 ✓ N/A
S7 ✓ ✓
S8 - -

(b) Exp. 2

H1 H2
S1 ✓ ✓
S2 ✓ N/A
S3 ✓ N/A
S4 ✓ N/A
S5 ✓ ✓
S6 ✓ ✓
S7 ✓ ✓
S8 ✓ -

(c) Exp. 3

H3 H4
S1 - ✓
S2 - ✓
S3 - ✓
S4 - ✓
S5 - ✓
S6 - ✓
S7 - ✓
S8 - ✓
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Fig. 5: Box plots for the experiments comparing automatic
collision avoidance (ACA) algorithm, manual control (Man-
ual), and basic risk field (BRF) algorithm. Results in (a1)–
(a3) show ACA versus manual control of the UAV with yaw.
Results in (b1)–(b3) show ACA versus manual control of the
UAV without yaw. Results in (c1)–(c3) show performance of
ACA versus BRF algorithm. Left column shows the trial time
[(a1)–(c1)], middle column shows the path length [(a2)–(c2)],
and right column shows the average speed [(a3)–(c3)].

formed at higher operating speeds with the ACA algorithm
compared to the BRF algorithm as seen by the statistics for all
subjects and all trials (Table II) and the completed trials only
(Table III). When looking at the individual subject’s result in
Table IV(c), the hypothesis is supported by all eight subjects
independently.

VII. DISCUSSION

It is observed that there is a large difference in the
speed increase between the first and second experiment, both
comparing ACA to manual control. It is hypothesized that
this resulted from the fact that the subjects were informed
during the first experiment that a large yaw input at the same
time as roll and pitch could result in collision with the ACA
algorithm and tended to fly differently in both the manual and
ACA trials, typically flying a short distance and stopping and
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then rotating in place.
The third hypothesis is that there would be fewer collisions

using the ACA algorithm than the BRF algorithm. The results
of the third experiment are inconclusive with regard to this
hypothesis. It was expected that the BRF would perform well
regarding collisions due to the potential field’s conservative
nature, leading to the slower operation speed, so these results
are not surprising. The ACA algorithm could be made more
conservative to reduce its number of collisions as well. Given
the mean number of collisions from the third experiment,
obtaining statistical significance would require a much higher
power of the study through an increased number of subjects.
However, the effect size is small (0.12 when considering the
BRF as the control group) and a study with higher power is
not likely necessary from a practical standpoint.

The third experiment supported the fourth hypothesis,
which is that the ACA algorithm would perform at higher
average operating speeds than the BRF algorithm. An increase
in speed of approximately 37% is observed in the experiment.
This improvement in performance is predicted due to the
ACA algorithm’s ability to adjust the input based on the
full dynamics and, for example, allowing the robot to strafe
along a wall and only alter the trajectory when a collision
is predicted. The BRF is more conservative with a repulsive
force always applied with a magnitude based on velocity and
distance to the wall. In the current implementation, the forces
were tuned to be able to travel through the narrow corridors,
which are problematic for potential-field algorithms [23],
while still being able to decelerate the robot to a stop when
it approaches a wall at high speed. Although it is predicted
that the BRF could allow higher operating speeds in less-
constrained environments, in applications like search-and-
rescue a tightly constrained environment can be expected.

VIII. CONCLUSIONS AND FUTURE WORK
This paper studied UAV-pilot performance with and with-

out the assistance of collision-avoidance algorithms. A com-
parison was done between a feedforward-based collision-
avoidance algorithm, a basic risk field (potential field-based)
algorithm, and full manual control. Human-subject tests were
performed where pilots operated a simulated UAV system
running the algorithms through three maze-like environments.
In the experiments, the number of collisions, the path length,
trial time, and average operating speed were recorded. The
experimental results showed that the proposed feedforward-
based automatic collision-avoidance algorithm is capable of
significantly improving a pilot’s performance compared to
manual control and the basic risk field algorithm for the tele-
operation of UAVs.

Further studies would include more extensive comparison
of the feedforward-based collision avoidance algorithm to
other local collision avoidance methods and field studies of
the algorithms on various UAV platforms including fixed-
wing configurations.
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